scholarly journals Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ming Jia ◽  
Dan Zhang ◽  
Chunxiang Zhang ◽  
Chunhong Li

AbstractPancreatic cancer is one of the most lethal malignant tumors with a low survival rate, partly because the tumor microenvironment (TME), which consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), immune cells, and vascular systems, prevents effective drug delivery and chemoradiotherapy. Thus, modulating the microenvironment of pancreatic cancer is considered a promising therapeutic approach. Since nanoparticles are one of the most effective cancer treatment strategies, several nano-delivery platforms have been developed to regulate the TME and enhance treatment. Here, we summarize the latest advances in nano-delivery systems that alter the TME in pancreatic cancer by depleting ECM, inhibiting CAFs, reversing immunosuppression, promoting angiogenesis, or improving the hypoxic environment. We also discuss promising new targets for such systems. This review is expected to improve our understanding of how to modulate the pancreatic cancer microenvironment and guide the development of new therapies. Graphical Abstract

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.


2019 ◽  
Vol 81 (1) ◽  
pp. 211-233 ◽  
Author(s):  
Yaqing Zhang ◽  
Howard C. Crawford ◽  
Marina Pasca di Magliano

Pancreatic cancer is characterized by an extensive fibroinflammatory reaction that includes immune cells, fibroblasts, extracellular matrix, vascular and lymphatic vessels, and nerves. Overwhelming evidence indicates that the pancreatic cancer microenvironment regulates cancer initiation, progression, and maintenance. Pancreatic cancer treatment has progressed little over the past several decades, and the prognosis remains one of the worst for any cancer. The contribution of the microenvironment to carcinogenesis is a key area of research, offering new potential targets for treating the disease. Here, we explore the composition of the pancreatic cancer stroma, discuss the network of interactions between different components, and describe recent attempts to target the stroma therapeutically. We also discuss current areas of active research related to the tumor microenvironment.


2020 ◽  
Vol 12 (12) ◽  
pp. 1355-1367
Author(s):  
Xiaoyan Lin ◽  
Jiakang Ma ◽  
Kaikai Ren ◽  
Mingyu Hou ◽  
Bo Zhou ◽  
...  

Immunotherapy for pancreatic cancer (PC) faces significant challenges. It is urgent to find immunerelated genes for targeted therapy. We aimed to identify immune-related messenger ribonucleic acids (mRNAs) with multiple methods of comprehensive immunoenrichment analysis in predicting survival of PC. PC genomics and clinical data were downloaded from TCGA. We analyzed relative enrichment of 29 immune cells using ssGSEA and classified PC samples into three immuneinfiltrating subgroups. Immune cell infiltration level and pathways were evaluated by ESTIMATE data and KEGG. Independent risk factors were derived from the combined analysis of WGCNA, LASSO regression and Cox regression analyses. Immune risk score was calculated according to four mRNAs to identify its value in predicting survival. PPI analysis was used to analyze the connections and potential pathways among genes. Finally, PC samples were classified into three immuneinfiltrating subgroups. Immunity high subgroup had higher immune score, soakage of immune cells, HLA/PD-L1 expression level, immune-related pathways enrichment and better survivability. Four potential prognostic immune-related genes (ITGB7, RAC2, DNASE1L3, and TRAF1) were identified. Immune risk score could be a potential survival prediction indictor with high sensitivity and specificity (AUC values = 0.708, HR = 1.445). A PPI network with seven nodes and five potential targeted pathways were generated. In conclusion, we estimated the state of immune infiltration in the PC tumor microenvironment by calculating stromal and immune cells enrichment with ssGSEA algorithms, and identified four prognostic immune-related genes that affect the proportion and distribution of immune cells infiltration in the tumor microenvironment. They lay a theoretical foundation to be important immunity targets of individual treatment in PC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenfeng Deng ◽  
Jilong Wang ◽  
Banghao Xu ◽  
Zongrui Jin ◽  
Guolin Wu ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The “Estimation of STromal and Immune cells in MAlignant Tumors using Expression data” algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.


Neoplasia ◽  
2011 ◽  
Vol 13 (8) ◽  
pp. 664-IN3 ◽  
Author(s):  
Vegard Tjomsland ◽  
Anna Spångeus ◽  
Johanna Välilä ◽  
Per Sandström ◽  
Kurt Borch ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Shaojie Wu ◽  
Huixian Kuang ◽  
Jin Ke ◽  
Manfei Pi ◽  
Dong-Hua Yang

Tumor cells rewire metabolism to meet their increased nutritional demands, allowing the maintenance of tumor survival, proliferation, and expansion. Enhancement of glycolysis and glutaminolysis is identified in most, if not all cancers, including multiple myeloma (MM), which interacts with a hypoxic, acidic, and nutritionally deficient tumor microenvironment (TME). In this review, we discuss the metabolic changes including generation, depletion or accumulation of metabolites and signaling pathways, as well as their relationship with the TME in MM cells. Moreover, we describe the crosstalk among metabolism, TME, and changing function of immune cells during cancer progression. The overlapping metabolic phenotype between MM and immune cells is discussed. In this sense, targeting metabolism of MM cells is a promising therapeutic approach. We propose that it is important to define the metabolic signatures that may regulate the function of immune cells in TME in order to improve the response to immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pei-Yu Chen ◽  
Wen-Fei Wei ◽  
Hong-Zhen Wu ◽  
Liang-Sheng Fan ◽  
Wei Wang

Cancer-associated fibroblasts (CAFs) are important, highly heterogeneous components of the tumor extracellular matrix that have different origins and express a diverse set of biomarkers. Different subtypes of CAFs participate in the immune regulation of the tumor microenvironment (TME). In addition to their role in supporting stromal cells, CAFs have multiple immunosuppressive functions, via membrane and secretory patterns, against anti-tumor immunity. The inhibition of CAFs function and anti-TME therapy targeting CAFs provides new adjuvant means for immunotherapy. In this review, we outline the emerging understanding of CAFs with a particular emphasis on their origin and heterogeneity, different mechanisms of their regulation, as well as their direct or indirect effect on immune cells that leads to immunosuppression.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoqi Mao ◽  
Jin Xu ◽  
Wei Wang ◽  
Chen Liang ◽  
Jie Hua ◽  
...  

AbstractCancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.


Sign in / Sign up

Export Citation Format

Share Document