scholarly journals Phytochemical evaluation and pharmacognostic standardization of Syzygium palghatense endemic to Western Ghats

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
V. R. Snehalatha ◽  
A. R. Rasmi

Abstract Background The plants belonging to the genus Syzygium has received much attention since ancient times due to its multidimensional uses for mankind. These plants in general, reported to contain a wide array of phytomolecules with a broad spectrum of biological activities that include antihypoglycemic, antioxidant, anti-inflammatory, anticarcinogenic, and antihypertensive properties. The pharmacological potential of S. palghatense which is endemic to Western Ghats has not yet been investigated. The present study was intended to examine the potential benefits of the leaves and bark of S. palghatense. Results Morpho-anatomical studies of S. palghatense provided useful details for the identification. The pharmacological characterization of the plants shows significant results in their studied parameters. The total phenolic and flavonoid contents were higher in methanolic extracts of leaves and bark of S. palghatense. Methanolic extract of the leaves and bark have superior antioxidant capacity when compared with the chloroform, ethyl acetate, and distilled water extracts. A significant result in alpha amylase and alpha glucosidase enzyme activity was exhibited when antidiabetic study was performed. Conclusion The current study showed that the methanolic extract of S. palghatense leaves and bark have significant pharmacognostic properties and potential antioxidant and antidiabetic compounds. Phytochemical studies portray the presence of several biologically active secondary metabolites, including essential oil, alkaloid, glycosides, carbohydrate, tannins, reducing sugar, phenolics, and saponins, which may be the reason for its biological properties. As compared to bark, leaves of S. palghatense possess significant activity toward all the biological properties tested.

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1510
Author(s):  
Gokhan Zengin ◽  
Dejan Stojković ◽  
Mohamad Fawzi Mahomoodally ◽  
Bibi Sharmeen Jugreet ◽  
Mehmet Yavuz Paksoy ◽  
...  

Seseli L. is one of the largest genera of the Apiaceae family widely known for their traditional uses as herbal remedies. In the present study, the methanolic and water extracts of two Seseli species, S. gummiferum and S. transcaucasicum were evaluated for their bioactive contents and biological activities. The total phenolic and flavonoid contents in the extracts ranged from 19.09 to 24.33 mg GAE/g and from 0.45 to10.09 mg RE/g, respectively. Moreover, while narcissin was detected as the most abundant component in the methanolic extract of S. transcaucasicum (261.40 µg/g), chlorogenic acid was identified as the major component in all the other extracts, although a high amount was also present in the methanolic S. transcaucasicum extract (107.48–243.12 µg/g). The total antioxidant capacity was also determined by the phosphomolybdenum assay (0.66–1.18 mM TE/g). Other antioxidant assays such as the radical scavenging assays (DPPH: 5.51–11.45 mg TE/g; ABTS: 43.46–51.91 mg TE/g), reducing assays (CUPRAC: 41.67–53.20 mg TE/g; FRAP: 31.26–34.14 mg TE/g), as well as the metal chelating activity assay (14.38–38.57 mg EDTAE/g) were conducted. All the extracts showed inhibitory potential against the enzyme’s amylase (0.12–0.78 mM ACAE/g), acetyl- and butyryl-cholinesterase (0.15–9.71 mg GALAE/g), while only the methanolic extracts acted as inhibitors of tyrosinase (107.15 and 109.37 mg KAE/g) and only the water extract of S. gummiferum displayed anti-glucosidase activity (0.13 mM ACAE/g). Interestingly, the methanolic extracts of both Seseli species showed lower cytotoxicity towards HaCaT cells (IC50: >500 µg/mL), compared to the water extracts (IC50: 267.8 and 321.41 µg/mL). Besides, only the methanolic extracts showed a slight wound healing effect (28.21 and 31.23%). All extracts showed antibacterial action against Staphylococcus lugdunensis (minimum inhibitory and bactericidal concentrations: 0.025–2 mg/mL). S. gummiferum methanolic extract, which exhibited the highest antibacterial potency was found to inhibit adhesion and invasion of S. lugdunensis to HaCaT cells as well. Taken together, this study demonstrated the two Seseli species to harbour interesting bioactive components, in particular polyphenolics and to exhibit several biological properties that could be further investigated for their potential exploitation as healing agents as supported by various traditional medicinal uses.


2019 ◽  
pp. 83-90 ◽  
Author(s):  
Natalia Nikolaevna Sazhina ◽  
Petr Vladimirovich Lapshin ◽  
Natal'ya Viktorovna Zagoskina ◽  
Nadezhda Pavlovna Palmina

Various species of the genus Aloe which there are in the world more than 500 are considered as important sources of biologically active substances and attract an attention of researchers by numerous manifestations of their biological properties. The most studied and used Aloe species are A. arborescens and A. vera, however some other species show not smaller biological activity, in particular antioxidant, than made mention. In the present work on model of the initiated oxidation of phosphatidylcholine liposomes comparison of the antioxidant activity (AOA) of leaves extracts of A. arborescens, A. pillansii, A. squarrosa and also the total content of their phenolic compounds was carried out. It is established that A. pillansii extract has approximately by 12 times higher AOA, than A. arborescens extract, and by 4 times, than A. squarrosa. The measured values of the total phenolic compounds content showed considerably smaller difference between these extracts. It can demonstrate existence in A. pillansii leaves of more difficult antioxidant profile, than in A. arborescens, and higher concentration of active phenolic metabolites. Results of this work allow recommending A. pillansii for more depth studies of its different biological activities.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Grażyna Łaska ◽  
Aneta Sienkiewicz ◽  
Marcin Stocki ◽  
Jordan K. Zjawiony ◽  
Vimal Sharma ◽  
...  

The present study aimed to identify biologically active secondary metabolites from the rare plant species, <em>Pulsatilla patens</em> subsp. <em>patens</em> and the cultivated <em>P. vulgaris</em> subsp. <em>vulgaris</em>. Chromatographic fractionation of the ethanolic extract of the roots of <em>P. patens</em> subsp. <em>patens</em> resulted in the isolation of two oleanane-type glycosides identified as hederagenin 3-<em>O</em>-β-d-glucopyranoside (2.7 mg) and hederagenin 3-<em>O</em>-β-d-galactopyranosyl-(1→2)-β-d-glucopyranoside (3.3 mg, patensin). HPLC analysis of the methanolic extract of the crude root of <em>P. patens</em> subsp. <em>patens</em> and <em>P. vulgaris</em> subsp. <em>vulgaris</em> revealed the presence of <em>Pulsatilla</em> saponin D (hederagenin 3-<em>O</em>-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→4)]-α-l-arabinopyranoside). Chromatographic analysis using GC-MS of the silylated methanolic extracts from the leaves and roots of these species identified the presence of carboxylic acids, such as benzoic, caffeic, malic, and succinic acids. The extracts from <em>Pulsatilla</em> species were tested for their antifungal, antimicrobial, and antimalarial activities, and cytotoxicity to mammalian cell lines. Both <em>P. patens</em> subsp. <em>patens</em> and <em>P. vulgaris</em> subsp. <em>vulgaris</em> were active against the fungus <em>Candida glabrata</em> with the half-maximal inhibitory concentration (IC<sub>50</sub>) values of 9.37 µg/mL and 11 µg/mL, respectively. The IC<sub>50</sub> values for cytotoxicity evaluation were in the range of 32–38 μg/mL for <em>P. patens</em> subsp. <em>patens</em> and 35–57 μg/mL for <em>P. vulgaris</em> subsp. <em>vulgaris</em> for each cell line, indicating general cytotoxic activity throughout the panel of evaluated cancer and noncancer cells.


2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Fariba Heshmati Afshar ◽  
Masumeh Zadehkamand ◽  
Zahra Rezaei ◽  
Abbas Delazar ◽  
Vahideh Tarhriz ◽  
...  

Abstract Background Artemisia splendens from the Asteraceae family is a new source of biologically active compounds. The current study investigated to evaluate antimicrobial and cytotoxicity activity of methanolic extracts and their fractions obtained from aerial parts by agar disk diffusion and MTT methods, respectively. The active fractions were subjected to preparative HPLC for isolating the pure compounds, which were structurally elucidated, by 1H and 13C NMR. Results The results showed that the methanolic extract and its 60% SPE fraction have the anti-proliferative activity on A549 cell line in comparison with the control group. Meanwhile, the methanolic extract and its 40% SPE fraction can inhibit the growth of Gram-positive strains as anti-microbial activity. The 60% SPE fraction also illustrated anti-proliferative activity on the HT-29 cell line compared to the control group. Chromatographic separations via preparative HPLC yielded 5 flavonoids and three flavonoid glycosides. Conclusion Based on the results it can be concluded that A. splendens as a potential source of cytotoxic and antimicrobial compounds can be used in pharmaceutics.


2021 ◽  
Vol 22 (5) ◽  
pp. 2712
Author(s):  
Anne Hanneken ◽  
Maluz Mercado ◽  
Pamela Maher

The identification of soluble fibroblast growth factor (FGF) receptors in blood and the extracellular matrix has led to the prediction that these proteins modulate the diverse biological activities of the FGF family of ligands in vivo. A recent structural characterization of the soluble FGF receptors revealed that they are primarily generated by proteolytic cleavage of the FGFR-1 ectodomain. Efforts to examine their biological properties are now focused on understanding the functional consequences of FGFR-1 ectodomain shedding and how the shedding event is regulated. We have purified an FGFR-1 ectodomain that is constitutively cleaved from the full-length FGFR-1(IIIc) receptor and released into conditioned media. This shed receptor binds FGF-2; inhibits FGF-2-induced cellular proliferation; and competes with high affinity, cell surface FGF receptors for ligand binding. FGFR-1 ectodomain shedding downregulates the number of high affinity receptors from the cell surface. The shedding mechanism is regulated by ligand binding and by activators of PKC, and the two signaling pathways appear to be independent of each other. Deletions and substitutions at the proposed cleavage site of FGFR-1 do not prevent ectodomain shedding. Broad spectrum inhibitors of matrix metalloproteases decrease FGFR-1 ectodomain shedding, suggesting that the enzyme responsible for constitutive, ligand-activated, and protein kinase C-activated shedding is a matrix metalloprotease. In summary, shedding of the FGFR-1 ectodomain is a highly regulated event, sharing many features with a common system that governs the release of diverse membrane proteins from the cell surface. Most importantly, the FGFR ectodomains are biologically active after shedding and are capable of functioning as inhibitors of FGF-2.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Bogdan Kędzia ◽  
Elżbieta Hołderna-Kędzia

The paper presents a review of the publications on the anticancerogenic activity of the biologically active component of propolis – caffeic acid phenethyl ester (CAPE). Literature data indicate numerous biological properties of CAPE, namely: antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic and others. In numerous tests, both in vitro and in vivo, the significant activity of CAPE has been confirmed, including an action against HT-29 human colon adenoma cells, and five: human, murine and other tumor cell cultures. The authors also emphasize that CAPE supports the anticancerogenic effect of drugs, including doxorubicin and cisplatin, due to the reduction of cancer cell survival by 45% and 34%, respectively, compared to the above-mentioned drugs used alone. The conducted research indicates that the induction of apoptosis in cells, i.e. programmed cell death, can be mentioned among the main mechanisms of the anticancerogenic activity of CAPE.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Jasmine Speranza ◽  
Natalizia Miceli ◽  
Maria Fernanda Taviano ◽  
Salvatore Ragusa ◽  
Inga Kwiecień ◽  
...  

Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.


Author(s):  
Khuntia Tapas Kumar ◽  
Nanda Upendra Nath ◽  
Senapati Aswini Kumar

Background: The investigation of total flavonoids and antioxidant activity of polar extracts of Corchorus depressus is the major aim of this study. As observed from ancient literatures and folkloric claims the plant Corchorus depressus worshipped by the married women of Odisha, India, in the rituals called as “Jama Jutia”, possesses different biological activities including antioxidant property. Methods: The diphenyl picryl hydrazine, hydroxyl radical and nitric oxide radical scavenging methods were performed for measurement of the antioxidant activity at different extracts. The flavonoid and phenolic content of the extracts were determined by using aluminium chloride and Folin-Ciocalteau’s reagent (FCR) methods respectively. Results: The results for estimation of total phenolic content (mg/ 100 g) expressed as gallic acid equivalent (GAE) and total flavonoid (mg/ 100 g) in weight of quercetin equivalent (QE) was highest in methanolic extract 78.46 and  21.2 respectively, followed by 18.18 mg/100 g in GAE and 1.80 mg/100 g in QE for aqueous extract. Conclusion: The methanolic extract of C. depressus at 100µg/ml showed highest DPPH, hydroxyl and nitric oxide radical scavenging activity and this activity may be attributed to the presence of saponins and flavonoids as detected in the extract.


Sign in / Sign up

Export Citation Format

Share Document