scholarly journals Inflammatory mechanisms of mental illness: brain inflammatory response to interferon stimulation

BJPsych Open ◽  
2021 ◽  
Vol 7 (S1) ◽  
pp. S256-S256
Author(s):  
James Herron ◽  
Jonathan Cavanagh

AimsWe hypothesise that peripheral IFN stimulation results in a brain inflammatory response via pathways of neuroimmune communication which in turn results in sickness-behaviour and depressive phenotype. We aim to determine if peripheral IFN stimulation results in brain inflammatory response including upregulation of inflammatory cytokines and chemokines.BackgroundThere is increasing interest in the role of dysregulated immune function and inflammation in the pathogenesis of psychiatric disorders including mood disorders and dementias. Immune mechanisms offer a new approach to investigating mechanism in addition to offering hope for new avenues of treatment.Interferon (IFN) therapy in humans is known to be associated with a significant risk of developing depression, both during therapy and increasing risk of relapse in the years following exposure, yet the mechanism remains unclear. IFN stimulation in animal models may offer insights into this phenomenon, in addition to furthering our understanding the role of immune mechanisms in the development of psychiatric phenotypes.MethodMice (n. 42) were exposed to either IFN-alpha, IFN-gamma or vehicle control using either osmotic pump or intraperitoneal injection over the course of 7 days. Mice were scarificed, brains were dissected and RNA extracted. Inflammatory gene transcription within the brain was determined using real time quantitative polymerase chain reaction (RTqPCR). Absolute quantification was achieved using standard curves and reference gene. Statistical significance was determined using Mann-Whitney or ANOVA/Kruskal-Wallis depending on normality of data and number of groups.ResultIFNγ stimulation is associated with a significant brain upregulation of a number of inflammatory cytokines and chemokines including Il1β, Tnfα, Il10, Ifnγ, Ccl2, Ccl5, Ccl19, Cxcl10 and Ccr5. However, unexpectedly we did not find IFNα stimulation to associate with brain inflammatory transcriptional changes.ConclusionThis work demonstrates a brain inflammatory response to peripheral IFNγ stimulation. The inflammatory profile, including upregulated chemokines, suggests that recruitment of leukocytes across the blood brain barrier may be part of the immune response. Further experiments using existing tissues will explore if there are structural/cellular changes within the brain parenchyma. Further experiments within the group will seek to demonstrate if IFN treatment associates with sickness behaviour in order to determine if this is a clinically meaningful model. Suprisingly, we did not see similar changes in the IFNα treated group, which requires further investigation.Funding: University of Glasgow, The Sackler Trust

Author(s):  
Sara Keränen ◽  
Santeri Suutarinen ◽  
Rahul Mallick ◽  
Johanna P. Laakkonen ◽  
Diana Guo ◽  
...  

Abstract Background Brain arteriovenous malformations (bAVM) may rupture causing disability or death. BAVM vessels are characterized by abnormally high flow that in general triggers expansive vessel remodeling mediated by cyclo-oxygenase-2 (COX2), the target of non-steroidal anti-inflammatory drugs. We investigated whether COX2 is expressed in bAVMs and whether it associates with inflammation and haemorrhage in these lesions. Methods Tissue was obtained from surgery of 139 bAVMs and 21 normal Circle of Willis samples. The samples were studied with immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR). Clinical data was collected from patient records. Results COX2 expression was found in 78% (109/139) of the bAVMs and localized to the vessels’ lumen or medial layer in 70% (95/135) of the bAVMs. Receptors for prostaglandin E2, a COX2-derived mediator of vascular remodeling, were found in the endothelial and smooth muscle cells and perivascular inflammatory cells of bAVMs. COX2 was expressed by infiltrating inflammatory cells and correlated with the extent of inflammation (r = .231, p = .007, Spearman rank correlation). COX2 expression did not associate with haemorrhage. Conclusion COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodelling and ongoing inflammation. Role of COX2 signalling in the pathobiology and clinical course of bAVMs merits further studies.


Author(s):  
Andrea Sanchez-Navarro ◽  
Isaac González-Soria ◽  
Rebecca Caldiño-Bohn ◽  
Norma A. Bobadilla

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular, and kidney disorders are intensively studied to find effective therapeutic targets. Given serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin have been associated with diverse pathophysiological events. In particular, we will focus on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes, as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Scott Seitz ◽  
Penny Clarke ◽  
Kenneth L. Tyler

ABSTRACT Flaviviruses account for most arthropod-borne cases of human encephalitis in the world. However, the exact mechanisms of injury to the central nervous system (CNS) during flavivirus infections remain poorly understood. Microglia are the resident immune cells of the CNS and are important for multiple functions, including control of viral pathogenesis. Utilizing a pharmacologic method of microglia depletion (PLX5622 [Plexxikon Inc.], an inhibitor of colony-stimulating factor 1 receptor), we sought to determine the role of microglia in flaviviral pathogenesis. Depletion of microglia resulted in increased mortality and viral titer in the brain following infection with either West Nile virus (WNV) or Japanese encephalitis virus (JEV). Interestingly, microglial depletion did not prevent virus-induced increases in the expression of relevant cytokines and chemokines at the mRNA level. In fact, the expression of several proinflammatory genes was increased in virus-infected, microglia-depleted mice compared to virus-infected, untreated controls. In contrast, and as expected, expression of the macrophage marker triggering receptor expressed on myeloid cells 2 (TREM2) was decreased in virus-infected, PLX5622-treated mice compared to virus-infected controls. IMPORTANCE As CNS invasion by flaviviruses is a rare but life-threatening event, it is critical to understand how brain-resident immune cells elicit protection or injury during disease progression. Microglia have been shown to be important in viral clearance but may also contribute to CNS injury as part of the neuroinflammatory process. By utilizing a microglial depletion model, we can begin to parse out the exact roles of microglia during flaviviral pathogenesis with hopes of understanding specific mechanisms as potential targets for therapeutics.


2015 ◽  
Vol 89 (10) ◽  
pp. 5602-5614 ◽  
Author(s):  
Fang Li ◽  
Yueyun Wang ◽  
Lan Yu ◽  
Shengbo Cao ◽  
Ke Wang ◽  
...  

ABSTRACTJapanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage.In vitrostudies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB.IMPORTANCEJapanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infectionper se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.


2017 ◽  
Vol 284 (1865) ◽  
pp. 20171694 ◽  
Author(s):  
Victoria L. Hansen ◽  
Lauren S. Faber ◽  
Ali A. Salehpoor ◽  
Robert D. Miller

Regulating maternal immunity is necessary for successful human pregnancy. Whether this is needed in mammals with less invasive placentation is subject to debate. Indeed, the short gestation times in marsupials have been hypothesized to be due to a lack of immune regulation during pregnancy. Alternatively, the maternal marsupial immune system may be unstimulated in the absence of a highly invasive placenta. Transcripts encoding pro-inflammatory cytokines were found to be overrepresented in the whole uterine transcriptome at terminal pregnancy in the opossum, Monodelphis domestica . To investigate this further, immune gene transcripts were quantified throughout opossum gestation. Transcripts encoding pro-inflammatory cytokines remained relatively low during pre- and peri-attachment pregnancy stages. Levels dramatically increased late in gestation, peaking within 12 h prior to parturition. These results mirror the spike of inflammation seen at eutherian parturition but not at attachment or implantation. Our results are consistent with the role of pro-inflammatory cytokines at parturition being an ancient and conserved birth mechanism in therian mammals.


2011 ◽  
Vol 238 (1-2) ◽  
pp. 44-51 ◽  
Author(s):  
Cristina Pintado ◽  
Elisa Revilla ◽  
María L. Vizuete ◽  
Sebastián Jiménez ◽  
Luisa García-Cuervo ◽  
...  

2021 ◽  
Author(s):  
Shahanshah Khan ◽  
Mahnoush S. Shafiei ◽  
Christopher Longoria ◽  
John Schoggins ◽  
Rashmin C. Savani ◽  
...  

Pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induces inflammatory cytokines and chemokines including IL-6, IL-1b, TNFa, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and neucleocapsid (N) proteins. When stimulated with extracellular S protein, human lung epithelial cells A549 also produce inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly are non-inflammatory, but elicit an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-kB pathway in a MyD88-dependent manner. Further, such an activation of the NF-kB pathway is abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein induces IL-6, TNF-a, and IL-1b in wild-type, but not Tlr2-deficient mice. Together these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.


2018 ◽  
Author(s):  
Estefania Ugarte-Berzal ◽  
Nele Berghmans ◽  
Lise Boon ◽  
Erik Martens ◽  
Jennifer Vandooren ◽  
...  

AbstractGelatinase B/matrix metalloproteinase-9 (MMP-9) triggers multiple sclerosis (MS) and the animal model of experimental autoimmune encephalomyelitis (EAE) by the breakdown of the blood-brain barrier. Interestingly, MMP-9 is beneficial in systemic autoimmunity caused by Fas-deficiency. Fas-deficient (faslpr)and Fas-ligand-deficient mice are protected against EAE. We here investigated the interaction between Fas and MMP-9 in the setting of induction of EAE and compared short- and long-term effects. We provoked EAE with myelin oligodendrocyte glycoprotein (MOG) peptide and compared EAE development in four genotypes (wild-type (WT), single knockoutmmp-9−/−,faslpr, andmmp-9−/−/faslpr) and monitored leukocytes, cytokines and chemokines as immunological parameters. As expected,faslprmice were resistant against EAE induction, whereas MMP-9 single knockout mice were not. In the doublemmp-9−/−/faslprmice the effects on disease scores pointed to independent rather than interrelated disease mechanisms. On a short term, leukocytes infiltrated into the brain and cytokines and chemokines after EAE induction were significantly higher in all the four genotypes studied, even in thefaslprandmmp9-/-/faslpr, which did not develop clinical disease. The levels of MMP-9 but not of MMP-2 were increased in the brain and in the peripheral organs after EAE induction. After 40 days all the animals recovered and did not show signs of EAE. However, the absence of MMP-9 in the remission phase suggested a protective role of MMP-9 in the late phase of the disease, thus singlemmp-9−/−mice presented a delayed onset and remission in comparison with WT animals suggesting a phase-dependent role of MMP-9 in the disease. Nevertheless, the levels of some cytokines and chemokines were remained higher than in control animals even 100 days after EAE induction, attesting to a prolonged state of immune activation. We thus yielded new insights and useful markers to monitor this activated immune status. Furthermore, MMP-9 but not MMP-2 levels remained increased in the brains and, to a higher extend, in the spleens of the WT mice even during the remission phase, which is in line with the role of MMP-9 as a useful marker and a protective factor for EAE in the remission phase.


2019 ◽  
Vol 41 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Simon Spichak ◽  
Timothy G. Dinan ◽  
John F. Cryan

How does the immune system impact brain development? The exciting and somewhat unexpected relationship between the immune system and the brain has become one of the most fascinating topics in neuroscience. Even though the immune system was initially implicated in resolving viral and bacterial threats, it is now becoming more evident that it also plays a role in processes in the brain, both under healthy and pathological conditions. This novel role of the immune system in brain health has been implicated in various psychopathologies where neurodevelopment, stress and mood are central. In particular, its role in healthy brain development is becoming more evident, and understanding neuroimmune communication is becoming crucial in treating neurodevelopmental and mood disorders in later life. In the brain, glia function as part of the innate immune system and are programmed to respond to pathogens and physical injury. They also play an important role in neuronal development and pruning. These cells communicate with and respond to chemical signals, such as cytokines and chemokines, which can then initiate or downregulate inflammatory responses. Finally, the trillions of microbes residing in the gut can also stimulate cytokine and chemokine responses in the periphery and play an important role in both immunity and brain development.


2020 ◽  
Author(s):  
Debby van Riel ◽  
Carmen W.E. Embregts ◽  
Gregorius J. Sips ◽  
Johannes P.C. van den Akker ◽  
Henrik Endeman ◽  
...  

SummaryCOVID-19 is associated to a wide range of extra-respiratory complications, of which the pathogenesis is currently not fully understood. In this study we report the temporal kinetics of viral RNA and inflammatory cytokines and chemokines in serum during the course of COVID-19. We show that a RNAemia occurs more frequently and lasts longer in patients that develop critical disease compared to patients that develop moderate or severe disease. Furthermore we show that concentrations of IL-10 and MCP-1—but not IL-6—are associated with viral load in serum. However, higher levels of IL-6 were associated with the development of critical disease. The direct association of inflammatory cytokines with viral load or disease severity highlights the complexity of systemic inflammatory response and the role of systemic viral spread.


Sign in / Sign up

Export Citation Format

Share Document