scholarly journals Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers

2013 ◽  
Vol 31 (17) ◽  
pp. 2205-2218 ◽  
Author(s):  
Rakesh K. Jain

For almost four decades, my work has focused on one challenge: improving the delivery and efficacy of anticancer therapeutics. Working on the hypothesis that the abnormal tumor microenvironment—characterized by hypoxia and high interstitial fluid pressure—fuels tumor progression and treatment resistance, we developed an array of sophisticated imaging technologies and animal models as well as mathematic models to unravel the complex biology of tumors. Using these tools, we demonstrated that the blood and lymphatic vasculature, fibroblasts, immune cells, and extracellular matrix associated with tumors are abnormal, which together create a hostile tumor microenvironment. We next hypothesized that agents that induce normalization of the microenvironment can improve treatment outcome. Indeed, we demonstrated that judicious use of antiangiogenic agents—originally designed to starve tumors—could transiently normalize tumor vasculature, alleviate hypoxia, increase delivery of drugs and antitumor immune cells, and improve the outcome of various therapies. Our trials of antiangiogenics in patients with newly diagnosed and recurrent glioblastoma supported this concept. They revealed that patients whose tumor blood perfusion increased in response to cediranib survived 6 to 9 months longer than those whose blood perfusion did not increase. The normalization hypothesis also opened doors to treating various nonmalignant diseases characterized by abnormal vasculature, such as neurofibromatosis type 2. More recently, we discovered that antifibrosis drugs capable of normalizing the tumor microenvironment can improve the delivery and efficacy of nano- and molecular medicines. Our current efforts are directed at identifying predictive biomarkers and more-effective strategies to normalize the tumor microenvironment for enhancing anticancer therapies.

Author(s):  
Mário Esteves ◽  
Mariana P. Monteiro ◽  
Jose Alberto Duarte

AbstractThe tumor vessel network has been investigated as a precursor of an inhospitable tumor microenvironment, including its repercussions in tumor perfusion, oxygenation, interstitial fluid pressure, pH, and immune response. Dysfunctional tumor vasculature leads to the extravasation of blood to the interstitial space, hindering proper perfusion and causing interstitial hypertension. Consequently, the inadequate delivery of oxygen and clearance of by-products of metabolism promote the development of intratumoral hypoxia and acidification, hampering the action of immune cells and resulting in more aggressive tumors. Thus, pharmacological strategies targeting tumor vasculature were developed, but the overall outcome was not satisfactory due to its transient nature and the higher risk of hypoxia and metastasis. Therefore, physical exercise emerged as a potential favorable modulator of tumor vasculature, improving intratumoral vascularization and perfusion. Indeed, it seems that regular exercise practice is associated with lasting tumor vascular maturity, reduced vascular resistance, and increased vascular conductance. Higher vascular conductance reduces intratumoral hypoxia and increases the accessibility of circulating immune cells to the tumor milieu, inhibiting tumor development and improving cancer treatment. The present paper describes the implications of abnormal vasculature on the tumor microenvironment and the underlying mechanisms promoted by regular physical exercise for the re-establishment of more physiological tumor vasculature.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 176-176
Author(s):  
Annelies Laeremans ◽  
Na Li ◽  
Jeff Kim ◽  
Xiao-Jun Ma ◽  
Emily Park

176 Background: Interactions between tumor and immune cells in the tumor microenvironment (TME) play a key role in tumor progression and treatment response with accumulating evidence indicating a crucial role for tumor infiltrating immune cells. Although infiltrating cytotoxic T lymphocytes (CTLs) have been correlated with improved clinical outcome, they are ineffective in eradicating tumors due to their inhibition by immune checkpoint molecules. Immune checkpoint inhibitors have demonstrated therapeutic efficacy and durable response for several tumor types including non-small cell lung cancer (NSCLC). However, the majority of patients are resistant or relapse after initial response. Characterizing the TME for checkpoint expression with single-cell and spatial resolution can provide critical insight into new immunotherapeutic strategies and identify new predictive biomarkers for stratifying and identifying patients most likely to benefit from immunotherapy including PD-1/PD-L1 immune checkpoint blockade. Methods: Using RNAscope in situ hybridization, we evaluated in situ co-expression profiles of therapeutic checkpoint targets at single-cell level in the TME of 56 archived NSCLC FFPE tissues. Results: Checkpoint molecules including PD1, PD-L1, PD-L2, TIM3, LAG3, CTLA-4 and GITR were visualized in a highly specific and sensitive manner in individual cells within tissue morphological context. Multiple checkpoint molecules were detected in the same immune environment, especially in highly inflamed tumors. In addition to PD-L1, tumor cell-intrinsic expression of PD1, TIM3, LAG3, and PD-L2 was observed in a subset of samples. Furthermore, co-expression of therapeutic checkpoint targets including PD1, LAG3, and TIM3 was observed in infiltrating immune cells and tumor cells. Conclusions: Single-cell co-expression profiles of checkpoint molecules could shed light on how cancer cells evade the host immune surveillance and develop resistance against checkpoint blockades. Also, they could reveal valuable insights into combinatorial therapies for checkpoint markers co-expressed by the patient’s immune cells in the TME.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Rui Wei ◽  
Si Liu ◽  
Shutian Zhang ◽  
Li Min ◽  
Shengtao Zhu

Tumors are surrounded by complex environmental components, including blood and lymph vessels, fibroblasts, endothelial cells, immune cells, cytokines, extracellular vesicles, and extracellular matrix. All the stromal components together with the tumor cells form the tumor microenvironment (TME). In addition, extracellular physical and chemical factors, including extracellular pH, hypoxia, elevated interstitial fluid pressure, and fibrosis, are closely associated with tumor progression, metastasis, immunosuppression, and drug resistance. Cellular and extracellular components in TME contribute to nearly all procedures of carcinogenesis. By summarizing the recent work in this field, we make a comprehensive review on the role of cellular and extracellular components in the process of carcinogenesis and their potential application in early diagnosis of cancer. We hope that a systematic review of the diverse aspects of TME will help both research scientists and clinicians in this field.


2020 ◽  
Vol 28 ◽  
Author(s):  
RamaRao Malla ◽  
Mohammad Amjad Kamal

: The breast tumor microenvironment (TME) promotes drug resistance through an elaborated interaction of TME components mediated by reactive oxygen species (ROS). Despite a massive accumulation of data concerning the targeting the ROS, but little is known about the ROS-responsive nanomedicine for targeting breast TME. This review submits the ROS landscape in breast TME, including ROS biology, ROS mediated carcinogenesis, reprogramming of stromal and immune cells of TME. We also discussed ROS-based precision strategies for imaging TME, including molecular imaging techniques with advanced probes, multiplexed methods, and multi-omic profiling strategies. ROS-responsive nanomedicine also describes various therapies, such as chemo-dynamic, photodynamic, photothermal, sono-dynamic, immune, and gene therapy for BC. We expound ROS-responsive primary delivery systems for chemotherapeutics, phytochemicals, and immunotherapeutics. This review also presents recent updates on nano-theranostics for simultaneous diagnosis and treatment of BCs. We assume that review on this advancing field will be beneficial to the development of ROS-based nanotheranostics for BC.


Author(s):  
Mª Carmen Ocana ◽  
Beatriz Martinez-Poveda ◽  
Ana R. Quesada ◽  
Miguel Angel Medina

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 607
Author(s):  
Alice Indini ◽  
Francesco Grossi ◽  
Mario Mandalà ◽  
Daniela Taverna ◽  
Valentina Audrito

Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A528-A528
Author(s):  
Lin Ma ◽  
Jian-Hua Mao ◽  
Mary Helen Barcellos-Hoff ◽  
Jade Moore

BackgroundCheckpoint inhibitors can induce robust and durable responses in a subset of patients. Extending this benefit to more patients could be facilitated by better understanding of how interacts with immune cells with the tumor microenvironment, which is a critical barrier to control both local and systemic disease. The composition and pattern of the immune infiltrate associates with the likelihood of response to immunotherapy. Inflamed tumors that exhibit a brisk immune cell infiltrate are responsive, while those in which immune cells are completely or partially excluded are not. Transforming growth factor β (TGFβ) is immunosuppressive and associated with the immune excluded phenotype.MethodsUsing an immune competent mammary tumor derived transplant (mTDT) model recently developed in our lab, exhibits inflamed, excluded or deserts immune infiltrate phenotypes based on localization of CD8 lymphocytes. Using whole transcriptome deep sequencing, cytof, and PET-CT imaging, we evaluated the tumor, microenvironment, and immune pathway activation among immune infiltrate phenotypes.ResultsThree distinct inflamed tumors phenotypes were identified: ‘classically’ inflamed characterized by pathway evidence of increased CD8+ T cells and decreased PD-L1 expression, inflamed tumors with pathways indicative of neovascularization and STAT3 signaling and reduced T cell mobilization, and an inflamed tumor with increased immunosuppressive myeloid phenotypes. Excluded tumors were characterized by TGFβ gene expression and pro-inflammatory cytokine signaling (e.g. TNFα, IL1β), associated with decreased leukocytes homing and increased immune cell death of cells. We visualized and quantified TGFβ activity using PET-CT imaging of 89Zr-fresolimumab, a TGFβ neutralizing antibody. TGFβ activity was significantly increased in excluded tumors compared to inflamed or desert tumors, which was supported by quantitative pathology (Perkin Elmer) of its canonical signaling target, phosphorylated SMAD2 (pSMAD2). pSMAD2 was positively correlated with PD-L1 expression in the stroma of excluded tumors. In contrast, in inflamed tumors, TGFβ activity positively correlated with increased F4/80 positive macrophages and negatively correlated with expression of PD-L1. CyTOF analysis of tumor and spleen immune phenotypes revealed increased trafficking of myeloid cells in mice bearing inflamed tumors compared to excluded and deserts.ConclusionsThe immunocompetent mTDT provides a model that bridges the gap between the immune landscape and tumor microenvironment. Integration of these high-dimensional data with further studies of response to immunotherapies will help to identify tumor features that favor response to treatment or the means to convert those that are unresponsive.


Sign in / Sign up

Export Citation Format

Share Document