scholarly journals Development of urination recognition technology based on Support Vector Machine using a smart band

2021 ◽  
Vol 17 (4) ◽  
pp. 287-292
Author(s):  
Hyun Seok Na ◽  
Khae Hawn Kim

The purpose of this study was to explore the feasibility of a urination management system by developing a smart band-based algorithm that recognizes the urination interval of women. We designed a device that recognizes the time and interval of urination based on the patient’s specific posture and posture changes. The technology used for recognition applied the Radial Basis Function kernel-based Support Vector Machine, a teaching and learning method that facilitates multidimensional analysis by simultaneously judging the characteristics of complex learning data. In order to evaluate the performance of the proposed recognition technique, we compared actual urination and device-sensed urination. An experiment was performed to evaluate the performance of the recognition technology proposed in this study. The efficacy of smart band monitoring urination was evaluated in 10 female patients without urination problems. The entire experiment was performed over a total of 3 days. The average age of the participants was 28.73 years (26–34 years), and there were no signs of dysuria. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 91.0%, proving the robustness of the proposed algorithm. This urination behavior recognition technique shows high accuracy and can be applied in clinical settings to characterize urination patterns in female patients. As wearable devices develop and become more common, algorithms that detect specific sequential body movement patterns that reflect specific physiological behaviors could become a new methodology to study human physiological behavior.

2018 ◽  
Vol 29 (9) ◽  
pp. 2027-2039 ◽  
Author(s):  
Zhangjie Chen ◽  
Ya Wang

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5152
Author(s):  
Conor McKinnon ◽  
James Carroll ◽  
Alasdair McDonald ◽  
Sofia Koukoura ◽  
David Infield ◽  
...  

Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O & M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE.


2011 ◽  
Vol 3 ◽  
pp. BECB.S7503 ◽  
Author(s):  
Sangeetha Subramaniam ◽  
Monica Mehrotra ◽  
Dinesh Gupta

There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of the important classes of compounds being explored for its potential to be novel antimalarials. Support Vector Machine (SVM) based model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descriptors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, mostly similar to the known inhibitors.


Author(s):  
Vina Ayumi

Research on human motion gesture recognition has been widely used for several technological devices to support monitoring of human-computer interaction, elderly people and so forth. This research area can be observed by conducting experiments for several body movements, such as hand movements, or body movements as a whole. Many methods have been used for human motion gesture recognition in previous studies. This paper attempted to collect data of performance evaluation of support vector machine algorithms for human motion recognition. We developed research methodology that is adapted PRISMA. This methodology is consisted of four main steps for reviewing scientific articles, including identification, screening, eligibility and inclusion criteria. After we obtained result of systematic literature review. We also conducted pilot study of SVM implementation for human gesture recognition. Based on the previous study result, the accuracy performance of vector machine algorithms for body gesture dataset is between 82.88% - 99.92% and hand gesture dataset 88.24% - 95.42%. Based on our pilot experiment, recognition accuracy with the SVM algorithm for human gesture recognition achieved 94,50% (average) accuracy.


Agriculture productivity is the main factor for improving economic status of India. Reduction in production rate is mainly due to various diseases in plants. Identification of plant disease in early stage is the main challenge for improving the production rate as well as economic status. This paper presents automatic disease detection in cotton crop for three types of diseases Alternaria Leaf Spot Fungal Disease (ALSFD), Grey Mildew Cotton Disease (GMCD), and Rust Foliar Fungal Disease (RFFD). The K-means clustering algorithm is used for disease segmentation for cotton leaf. The diseased cluster is segmented into three clusters. From cluster 2 the features Mean , Contrast, Energy, Correlation, Standard Deviation, Variance , Entropy, and Kurtosis are extracted. The extracted features for 30 samples are given to Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers for disease classification. The performance of these classifiers are compared. The ALSF disease is classified 77.4% for ANN and 84.3% for SVM, GMC disease is 87.8% for ANN and 98.7% in SVM, RFF disease is 90.1%for ANN and 93.2% for SVM. The overall average accuracy of ANN classifier is 85.1% for three diseases and overall average accuracy for SVM is 92.06% for three diseases. It is clearly observed from the analysis SVM classifier gives accurate disease detection compared to ANN.


Author(s):  
Firas Saaduldeen Ahmed ◽  
Noha Abed-Al-Bary Al-jawady

<div>Prosthetic devices are necessary to help amputees achieve their daily activity in the natural way possible. The prosthetic hand has controlled by type of signals such as electromyography (EMG) and mechanomyography (MMG). The MMG signals have represented mechanical signals that generate during muscle contraction. These signals can be detected by accelerometers or microphones and any kind of sensors that can detect muscle vibrations. The contribution of the current paper is classifying hand gestures and control prosthetic hands depends on pattern recognition through accelerometer and microphone are to detect MMG signals. In addition to the cost of prosthetic hand less than other designs. Six subjects are involved. In this present work is the devices. In this study, two of them are amputee subjects. Each subject performs seven classes of movements. Pattern recognition (PR) is used to classify hand gestures. The wavelet packet transform (WPT) and root mean square (RMS) as features extracted from the signals and support vector machine (SVM) as a classifier. The average accuracy is 88.94% for offline tests and 84.45% for online tests. 3D printing technology is used in this study to build prosthetic hands.</div>


2015 ◽  
Vol 775 ◽  
pp. 229-233
Author(s):  
Hao Jiang ◽  
Yuan Lin ◽  
Shuo Wang ◽  
Xiu Wu Sui

The processing mechanism of electrical discharge machining (EDM) is complex and there are many factors affecting it, therefore the process parameter is very important for processing quality. This paper analyses the relationship between electric parameter and processing quality, then uses support vector machine (SVM) to predict the optimum electric parameter. The simulation result shows that the highest prediction accuracy is 96.10%, the lowest is 89.20%, average accuracy is 94.28%, indicating that the algorithm stability and generalization ability are outstanding. Further verified by experiment, the highest prediction accuracy can amount to 92.65%, the lowest is 81.5%, average accuracy is 89.38%, and electric parameter optimized by SVM can guarantee the expected processing effect better. The exploration in EDM intelligent machining will be convenient for operators to determine the most effective machining conditions.


2018 ◽  
Vol 1 (1) ◽  
pp. 8-15
Author(s):  
Caroline Layadi ◽  
Mohammad Fajar ◽  
Hasniati Hasniati ◽  
Izmy Alwiah Musdar

The aims of this research are to implement Support Vector Machine for analyze abnormal data on sensor network and evaluate the implementation result. The data collection in the research were done through the searching of related libraries and software evaluate/testing. In this research, temperature, wind speed, and humidity tested using three kernels (linear, Gaussian, and polynomial). Evaluation result show that the implementation of Support Vector Machine can perform the best data validity analysis using Gaussian Kernel with the percentage of average accuracy, temperature 97.83%, humidity 94.5325%, and wind speed 96.93% for weather data 20-28 May and July 28-August 10, 2015. Meanwhile, for weather data June 5-6, 2017 obtained the percentage of average accuracy of temperature 92.855% and humidity 92.43%.


Author(s):  
Riska Yulianti ◽  
I Gede Pasek Suta Wijaya ◽  
Fitri Bimantoro

 The research of Javanese and Balinese ancient script have been done by some researches. However, the researches still have problems, such as image scaling, noise reduction and image transformation. This research implemented moment invariant and support vector machine to solve these problems especially on Sasak ancient script. The input data used in this research was 2700 handwritten Sasak ancient script. The testing was done to know the effect of thinning and the number of feature by using zoning on the classification performance. Accuracy is used as performance indicator. The highest average accuracy is 89.76%, on the second scenario, the average accuracy obtained is 92.52%. 


Author(s):  
Sara Bagherzadeh ◽  

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wavelet CNNs (WCNNs) weighted layers and multiclass support vector machine (MSVM) is proposed to improve recognition of emotional states from electroencephalogram (EEG) signals. First, EEG signals were preprocessed and converted to time-frequency (T-F) color representation or scalogram using the continuous wavelet transform (CWT) method. Then, scalograms were fed into four popular pre-trained CNNs, AlexNet, ResNet-18, VGG-19 and Inception-v3 to fine-tune them. Then, the best feature layer from each one was used as input to the MSVM method to classify four quarters of the valence-arousal model. Finally, subject-independent Leave-One-Subject-Out criterion was used to evaluate the proposed method on DEAP and MAHNOB-HCI databases. Results show that extracting deep features from the earlier convolutional layer of ResNet-18 (Res2a) and classifying using the MSVM increases the average accuracy, precision and recall about 20% and 12% for MAHNOB-HCI and DEAP databases, respectively. Also, combining scalograms from four regions of pre-frontal, frontal, parietal and parietal-occipital and two regions of frontal and parietal achieved the higher average accuracy of 77.47% and 87.45% for MAHNOB-HCI and DEAP databases, respectively. Combining CNN and MSVM increased recognition of emotion from EEG signal and results were comparable to state-of-the-art studies.


Sign in / Sign up

Export Citation Format

Share Document