scholarly journals HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation

PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171860 ◽  
Author(s):  
Seung-Shick Shin ◽  
Jun-Hui Song ◽  
Byungdoo Hwang ◽  
Dae-Hwa Noh ◽  
Sung Lyea Park ◽  
...  
2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Fandong Meng ◽  
Liye Fu ◽  
Chuize Kong

More and more studies have shown that long non-coding RNAs (lncRNAs) play critical roles in various biological processes of bladder cancer, including proliferation, apoptosis, migration and cell cycle arrest. LncRNA long intergenic noncoding RNA 00511 (linc00511) is one of the lncRNAs highly expressed in bladder cancer tissues and cells. However, little is known about the roles and mechanisms of linc00511 in bladder cancer. Here, we demonstrated that linc00511 was highly expressed in bladder cancer tissues and cells. Linc00511 knockdown could cause the cell proliferation suppression and cell cycle arrest, which were mediated by p18, p21, CDK4, cyclin D1 and phosphorylation Rb. Suppressed linc00511 could induce the apoptosis in T24 and BIU87 cells via activating the caspase pathway. Down-regulation of linc00511 could also suppress the migration and invasion of T24 and BIU87 cells. In addition, we found that the expression of linc00511 was negatively correlated with that of miR-15a-3p in the clinical bladder cancer samples. Further mechanistic studies showed that linc00511 knockdown induced proliferation inhibition, and apoptosis increase might be regulated through suppressing the activities of Wnt/β-catenin signaling pathway. Thus, we revealed that knockdown of linc00511 suppressed the proliferation and promoted apoptosis of bladder cancer cells through suppressing the activities of Wnt/β-catenin signaling pathway. Moreover, we suggested that linc00511 could be a potential therapeutic target and novel biomarker in bladder cancer.


2019 ◽  
Vol 19 (14) ◽  
pp. 1728-1736
Author(s):  
Xuefeng Liu ◽  
Yonggang Fan ◽  
Jing Xie ◽  
Li Zhang ◽  
Lihua Li ◽  
...  

Background:The 12-hydroxy-14-dehydroandrographolide (DP) is a predominant component of the traditional herbal medicine Andrographis paniculata (Burm. f.) Nees (Acanthaceae). Recent studies have shown that DP exhibits potent anti-cancer effects against oral and colon cancer cells.Objective:This investigation examined the potential effects of DP against osteosarcoma cell.Methods:A cell analyzer was used to measure cell viability. The cell growth and proliferation were performed by Flow cytometry and BrdU incorporation assay. The cell migration and invasion were determined by wound healing and transwell assay. The expression of EMT related proteins was examined by Western blot analysis.Results:In this study, we found that DP treatment repressed osteosarcoma (OS) cell growth in a dose-dependent manner. DP treatment significantly inhibited OS cell proliferation by arresting the cell cycle at G2/M phase. In addition, DP treatment effectively inhibited the migration and invasion abilities of OS cells through wound healing and Transwell tests. Mechanistic studies revealed that DP treatment effectively rescued the epithelialmesenchymal transition (EMT), while forced expression of SATB2 in OS cells markedly reversed the pharmacological effect of DP on EMT.Conclusion:Our data demonstrated that DP repressed OS cell growth through inhibition of proliferation and cell cycle arrest; DP also inhibited metastatic capability of OS cells through a reversal of EMT by targeting SATB2. These findings demonstrate DP’s potential as a therapeutic drug for OS treatment.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Chen ◽  
Lu Xu ◽  
Zhi-li Shan ◽  
Shu Chen ◽  
Hao Hu

Abstract Background Glutathione Peroxidase 8 (GPX8) as a member of the glutathione peroxidase (GPx) family plays an important role in anti-oxidation. Besides, dysregulation of GPX8 has been found in gastric cancer, but its detailed molecular mechanism in gastric cancer has not been reported. Methods Our study detected the expression of GPX8 in gastric cancer tissues and cell lines using immunohistochemistry (IHC), western blot and qRT-PCR, and determined the effect of GPX8 on gastric cancer cells using CCK-8, colony formation, transwell migration and invasion assays. Besides, the effect of GPX8 on the Wnt signaling pathway was determined by western blot. Furthermore, the transcription factor of GPX8 was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. In addition, the effect of GPX8 on tumor formation was measured by IHC and western blot. Results The over-expression of GPX8 was observed in gastric cancer tissues and cells, which facilitated the proliferation, migration and invasion of gastric cancer cells as well as the tumor growth. GPX8 knockdown effectively inhibited the growth of gastric cancer cells and tumors. Moreover, GPX8 could activate the Wnt signaling pathway to promote the cellular proliferation, migration and invasion through. Furthermore, FOXC1 was identified as a transcription factor of GPX8 and mediated GPX8 expression to affect cell development processes. Conclusions These findings contribute to understanding the molecular mechanism of GPX8 in gastric cancer. Additionally, GPX8 can be a potential biomarker for gastric cancer therapy.


Author(s):  
Yi Miao ◽  
Meng Lu ◽  
Qin Yan ◽  
Shuangdi Li ◽  
Youji Feng

Pyruvate kinase (PK) is a key enzyme in the process of glycolysis, catalyzing phosphoenolpyruvate (PEP) into pyruvate. Currently, PK isozyme type M2 (PKM2), one subtype of PK, has been proposed as a new tumor marker with high expression in various tumor tissues. Here we aimed to explore the effects of siRNA-PKM2 on ovarian carcinoma (OC) cell lines SKOV3 and OVCAR3, in which PKM2 was notably expressed. PKM2 gene interference lentivirus vectors were built by miRNA transfection assay. siRNA-PKM2-transfected SKOV3 and OVCAR3 cells were evaluated for cell proliferation, cell cycle distribution, cell apoptosis, cell migration, and invasion in this study. In addition, the expression levels of several tumor-related genes were measured using real-time PCR and Western blot. Results showed that siRNA-PKM2 markedly inhibited cell proliferation, induced apoptosis, and caused cell cycle arrest at the G0/G1 phase. Cell migration and invasion were significantly suppressed by siRNA-PKM2. Furthermore, the tumor-related genes caspase 7, Bad, and E-cadherin were upregulated, while MMP2, HIF1α, VEGF, and MMP9 were depressed by siRNA-PKM2. The function of siRNA-PKM2 on the biological behavior of OC cells indicated that PKM2 may also be a target for treatment of OC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengqin Wang ◽  
Hanzhong Zhang ◽  
Zhigang Cheng

EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document