scholarly journals Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252211
Author(s):  
Carmen Ranftler ◽  
Dietmar Nagl ◽  
Andreas Sparer ◽  
Andreas Röhrich ◽  
Michael Freissmuth ◽  
...  

Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C. difficile-associated diarrhea relies on the use of antibacterial agents. However, recurrences are frequent. The main virulence factors of C. difficile are two secreted cytotoxic proteins toxin A and toxin B. Alternative research exploring toxin binding by resins found a reduced rate of recurrence by administration of tolevamer. Hence, binding of exotoxins may be useful in preventing a relapse provided that the adsorbent is innocuous. Here, we examined the toxin binding capacity of G-PUR®, a purified version of natural clinoptilolite-tuff. Our observations showed that the purified clinoptilolite-tuff adsorbed clinically relevant amounts of C. difficile toxins A and B in vitro and neutralized their action in a Caco-2 intestinal model. This conclusion is based on four independent sets of findings: G-PUR® abrogated toxin-induced (i) RAC1 glucosylation, (ii) redistribution of occludin, (iii) rarefaction of the brush border as visualized by scanning electron microscopy and (iv) breakdown of the epithelial barrier recorded by transepithelial electrical resistance monitoring. Finally, we confirmed that the epithelial monolayer tolerated G-PUR® over a wide range of particle densities. Our findings justify the further exploration of purified clinoptilolite-tuff as a safe agent in the treatment and/or prevention of C. difficile-associated diarrhea.

2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 656
Author(s):  
Rubina Munir ◽  
Muhammad Zia-ur-Rehman ◽  
Shahzad Murtaza ◽  
Sumera Zaib ◽  
Noman Javid ◽  
...  

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, characterized by central cognitive dysfunction, memory loss, and intellectual decline poses a major public health problem affecting millions of people around the globe. Despite several clinically approved drugs and development of anti-Alzheimer’s heterocyclic structural leads, the treatment of AD requires safer hybrid therapeutics with characteristic structural and biochemical properties. In this endeavor, we herein report a microwave-assisted synthesis of a library of quinoline thiosemicarbazones endowed with a piperidine moiety, achieved via the condensation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes and (un)substituted thiosemicarbazides. The target N-heterocyclic products were isolated in excellent yields. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). Anti-Alzheimer potential of the synthesized heterocyclic compounds was evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vitro biochemical assay results revealed several compounds as potent inhibitors of both enzymes. Among them, five compounds exhibited IC50 values less than 20 μM. N-(3-chlorophenyl)-2-((8-methyl-2-(piperidin-1-yl)quinolin-3-yl)methylene)hydrazine carbothioamide emerged as the most potent dual inhibitor of AChE and BChE with IC50 values of 9.68 and 11.59 μM, respectively. Various informative structure–activity relationship (SAR) analyses were also concluded indicating the critical role of substitution pattern on the inhibitory efficacy of the tested derivatives. In vitro results were further validated through molecular docking analysis where interactive behavior of the potent inhibitors within the active pocket of enzymes was established. Quinoline thiosemicarbazones were also tested for their cytotoxicity using MTT assay against HepG2 cells. Among the 26 novel compounds, there were five cytotoxical and 18 showed proliferative properties.


2019 ◽  
Vol 6 ◽  
pp. 204993611983716 ◽  
Author(s):  
Glynn W. Webb ◽  
Harry R. Dalton

Hepatitis E virus (HEV) is the most common cause of viral hepatitis in the world. It is estimated that millions of people are infected every year, resulting in tens of thousands of deaths. However, these estimates do not include industrialized regions and are based on studies which employ assays now known to have inferior sensitivity. As such, this is likely to represent a massive underestimate of the true global burden of disease. In the developing world, HEV causes large outbreaks and presents a significant public-health problem. Until recently HEV was thought to be uncommon in industrialized countries, and of little relevance to clinicians in these settings. We now know that this is incorrect, and that HEV is actually very common in developed regions. HEV has proved difficult to study in vitro, with reliable models only recently becoming available. Our understanding of the lifecycle of HEV is therefore incomplete. Routes of transmission vary by genotype and location: endemic regions experience large waterborne epidemics, while sporadic cases in industrialized regions are zoonotic infections likely spread via the food chain. Both acute and chronic infection has been observed, and a wide range of extrahepatic manifestations have been reported. This includes neurological, haematological and renal conditions. As the complete clinical phenotype of HEV infection is yet to be characterized, a large proportion of cases go unrecognized or misdiagnosed. In many cases HEV infection does not feature in the differential diagnosis due to a lack of knowledge and awareness of the disease amongst clinicians. In combination, these factors have contributed to an underestimation of the threat posed by HEV. Improvements are required in terms of recognition and diagnosis of HEV infection if we are to understand the natural history of the disease, improve management and reduce the burden of disease around the world.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Evangelia A Pavlatou

The transmission of a wide range of diseases, related to the infection by pathogenic microorganisms is a major public health problem that daily endangers the safety of human population. Silver has been thoroughly studied and used against bacteria due to its antimicrobial properties. Nanostructured silver gathers all the advantages of the silver itself, as well as the advanced performance of the nanomaterials. Thus, currently, silver nanoparticles constitute the most widely used kind of nanoparticles in biomedicine, due to their attractive antimicrobial properties. A variety of physical and chemical methods are employed for the AgNPs synthesis. However, many of them include the use of toxic reagents or require large amounts of energy, during the synthesis process. For this reason, many eco-friendly methods are proposed in order to synthesize AgNPs. Hence, biogenic synthesis of AgNPs, utilizing biological resources opens a novel route for the development of alternative production processes.These methods seem to have significant advantages, as the extracts contribute positively to the formation and enhancement of the antimicrobial activity of AgNPs, also acting as protective agents of the produced particles. In this review an integrated approach of AgNPs bio-synthetic methods using microorganisms, such as bacteria and fungi, plants and plant extracts, as well as several templates, like DNA and viruses is discussed, shedding light on the comparative advantages of them.


2014 ◽  
Author(s):  
Bishwajit Ghose ◽  
Cheng Zhaohui ◽  
He Zhifei

South Asian population suffer a particularly wide range of infectious diseases among which TB and HIV appear to produce most profound influence across various dimensions of social life, healthcare and the economy. Although the countries in this region have a relatively lower prevalence of HIV/AIDS compared to other developing regions until now, the future looks rather bleak in terms of preparedness for emerging healthcare realities. Tuberculosis on the other hand, has always been a major public health problem plaguing the healthcare system and the economy for decades. Moreover, the emergence of the drug resistant (MDR-TB & XDR-TB) strains are making the existing intervention and prevention strategies less effective and posing ever-growing threats to the underdeveloped healthcare infrastructure. Understanding the underlying social-determinants of these diseases can prove crucial to design more comprehensive intervention approaches. This article aims to clarify why the healthcare system in South Asia needs to adopt a social-determinants-of-health (SDOH) approach as a long-term strategy for more efficient prevention and control of TB and HIV infection.


2020 ◽  
Author(s):  
Ozgun Kocabiyik ◽  
Valeria Cagno ◽  
Paulo Jacob Silva ◽  
Yong Zhu ◽  
Laura Sedano ◽  
...  

AbstractInfluenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is very high. It is very important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, i.e. irreversibly inhibit viral infectivity. Here, we describe a new class of broad-spectrum anti-influenza macromolecules that meets these criteria and displays exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated in 6’sialyl-N-acetyllactosamine (6’SLN) or 3’SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, we show that, in mice, the compounds provide therapeutic efficacy when administered 24h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir..


2001 ◽  
Vol 45 (1) ◽  
pp. 145-149 ◽  
Author(s):  
G. Nagaraj ◽  
M. V. Uma ◽  
M. S. Shivayogi ◽  
Hemalatha Balaram

ABSTRACT Malaria caused by Plasmodium falciparum is a major public health problem in the developing countries of the world. Clinical treatment of malaria has become complicated due to the occurrence of infections caused by drug resistant parasites. Secondary metabolites from fungi are an attractive source of chemotherapeutic agents. This work reports the isolation and in vitro antiplasmodial activities of peptide antibiotics of fungal origin. The three peptide antibiotics used in this study were efrapeptins, zervamicins, and antiamoebin. The high-performance liquid chromatography-purified peptides were characterized by nuclear magnetic resonance and mass spectral analysis. All three fungal peptides kill P. falciparum in culture with 50% inhibitory concentrations in the micromolar range. A possible mode of action of these peptide antibiotics on P. falciparum is presented.


2021 ◽  
Author(s):  
Felipe Figuerôa Moreira ◽  
Juliana de Araujo Portes ◽  
Nathalia Florencia Barros Azeredo ◽  
Christiane Fernandes ◽  
Adolfo Horn ◽  
...  

Chagas disease is a neglected tropical disease caused by the protozoan pathogen Trypanosoma cruzi. The disease is the major public health problem affecting about 6 to 7 million people worldwide,...


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Barbara Hersant ◽  
Mounia Sid-Ahmed ◽  
Laura Braud ◽  
Maud Jourdan ◽  
Yasmine Baba-Amer ◽  
...  

Chronic and acute nonhealing wounds represent a major public health problem, and replacement of cutaneous lesions by the newly regenerated skin is challenging. Mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) were separately tested in the attempt to regenerate the lost skin. However, these treatments often remained inefficient to achieve complete wound healing. Additional studies suggested that PRP could be used in combination with MSC to improve the cell therapy efficacy for tissue repair. However, systematic studies related to the effects of PRP on MSC properties and their ability to rebuild skin barrier are lacking. We evaluated in a mouse exhibiting 4 full-thickness wounds, the skin repair ability of a treatment combining human adipose-derived MSC and human PRP by comparison to treatment with saline solution, PRP alone, or MSC alone. Wound healing in these animals was measured at day 3, day 7, and day 10. In addition, we examined in vitro and in vivo whether PRP alters in MSC their proangiogenic properties, their survival, and their proliferation. We showed that PRP improved the efficacy of engrafted MSC to replace lost skin in mice by accelerating the wound healing processes and ameliorating the elasticity of the newly regenerated skin. In addition, we found that PRP treatment stimulated in vitro, in a dose-dependent manner, the proangiogenic potential of MSC through enhanced secretion of soluble factors like VEGF and SDF-1. Moreover, PRP treatment ameliorated the survival and activated the proliferation of in vitro cultured MSC and that these effects were accompanied by an alteration of the MSC energetic metabolism including oxygen consumption rate and mitochondrial ATP production. Similar observations were found in vivo following combined administration of PRP and MSC into mouse wounds. In conclusion, our study strengthens that the use of PRP in combination with MSC might be a safe alternative to aid wound healing.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Clara María Albani ◽  
Guillermo María Denegri ◽  
María Celina Elissondo

Human cystic echinococcosis remains a major public health problem on several countries and the treatment strategies are not solved. The aim of the present work was to determine the in vitro effect of thymol andMentha piperita,M. pulegium,andRosmarinus officinalisessential oils on the proliferation ofE. granulosuslarval cells. Isolated cells and cellular aggregates were obtained from hydatid cyst’s germinal layer and exposed to 1, 5, and 10 μg/ml of thymol and the different essential oils for 7 days. Drug effect was evaluated using test viability and scanning electron microscopy. Control cell culture viability was 2.1 x 106(100%) after 7 days of incubation. At day 7, thymol 5 μg/ml caused a reduction in cell viability of 63% and the essential oils ofM. piperita10 μg/ml,M. pulegium10 μg/ml, andR. officinalis10 μg/ml produced a reduction in the viability of 77, 82, and 71%, respectively. Moreover essential oils caused reduction in cell number, collapsed cells, and loss of normal tridimensional composition of the aggregates. Due to the inhibitory effect caused by essential oils onE. granulosuscells we suggested that it would be an effective means for suppression of larval growth.


Sign in / Sign up

Export Citation Format

Share Document