scholarly journals Preparation and Characterization of PMMA-AgNPs Polymer Composite as a Dental Prosthesis

2020 ◽  
Vol 32 (6) ◽  
pp. 1451-1455
Author(s):  
Adel Bendjama ◽  
Mohd Fadzelly Abu Bakar ◽  
Siti Fatimah Sabran ◽  
Sani Garba Durumin Iya

Silver nanoparticles (AgNPs) have been used for centuries in the field of medicine due to the antimicrobial properties. AgNPs has been synthesized and incorporated in different aspects of biomaterials. It is reported that AgNPs as a result of its small size, it provides sufficient antimicrobial effect at lower filler level, thus can be used in dentistry for prevention and reduction of biofilm formation on a surfaces of dental prosthesis. The purpose of this study is to develop AgNPs antimicrobial acrylic resin for dental prosthesis. The effect of AgNPs incorporated into acrylic resin poly methyl methacrylate (PMMA) on the bacterial biofilm was studied in terms of bacterial growth and the incorporating effect on the thermal stability of these polymeric biocides was evaluated. Silver nanoparticles in colloidal form was added to PMMA(ONDA-CRYL) using microwave and make four dental prosthesis at the different concentration. The specimens were delivered to the four toothless patients for 21 days. The formed biofilm was tested for microbiological study (taxonomic profile). After setting, the specimens were characterized to determine the spatial distribution of AgNPs on the PMMA matrix through scanning electron microscope and the thermal stability was examined using TGA and DSC. The modified PMMA prosthesis base containing AgNPs, which exhibited good in vivo antimicrobial properties without altering their thermal properties of degradation as well as their mechanical properties and minimize the maximum infectious signs by reducing the formation of microbial biofilm forming on the surfaces of dental prostheses. As the modification of PMMA with AgNPs improved the anti-biofilm properties without altering its mechanical and thermals properties to the degradation, it could be used as a dental prosthesis.

2021 ◽  
Vol 22 (13) ◽  
pp. 7130
Author(s):  
Jeffersson Krishan Trigo-Gutierrez ◽  
Yuliana Vega-Chacón ◽  
Amanda Brandão Soares ◽  
Ewerton Garcia de Oliveira Mima

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


2021 ◽  
Author(s):  
Hanyu Sun ◽  
Yuki Chan ◽  
Xuan Li ◽  
Ruogu Xu ◽  
Zhengchuan Zhang ◽  
...  

Abstract Background and aimsSurface modifications of titanium implants play essential role in facilitating osteointegration and enhancing their antimicrobial properties, while the latter is critical for preventing infectious diseases caused by the biofilm. However, it remains unknown about how the surface modifications could affect the composition and functional gene expression of oral microbiota deposited on the titanium implants. In this study, we aimed to investigate the impact of different nanostructured surfaces on the biofilm in vivo.ResultsNanophase calcium phosphate were successfully deposited into or between the TiO2 nanotubes with a diameter of 70–90 nm. NT and NTN surfaces showed increased roughness than the MP surface. XPS spectra showed that the O 1s was mainly divided into two bands in MP and NT samples, including Ti-O and -OH, while the surface modification of TiO2 nanotube in NT accounted for the increased intensity of Ti-O with the reference to that in MP samples. After the deposition of calcium phosphate, two new elemental peaks of Ca and P can be identified from the XPS survey spectrum of NTN. Moreover, the O 1s of NTN sample could be differentiated into three peaks, while the new one represented the -PO band. The 16S rDNA sequencing results showed that NT and NTN had minimal impact on the diversity and community structure of oral microbiota. Metatranscriptomic sequencing revealed that differentially expressed genes (DEGs) mostly differed in the terms of the biological process and cellular component on different surfaces. Gene Ontology (GO) terms enrichment indicated that NTN down-regulate the genes associated in localization and locomotion. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the DEGs were associated with microbial metabolism, protein synthesis and bacterial invasion of epithelial cells.ConclusionTiO2 nanotube and calcium phosphate-coated TiO2 nanotube despite improving the antimicrobial properties of implant surfaces, had unexpectedly minimal impact on the microbiome composition and diversity. Notably, nanostructured titanium surfaces could inhibit the bacterial migration and colonization, down-regulate the pathogen invasion pathways, and further destruct bacterial cellular membrane, all in all, conferred the bactericidal properties.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Sivolella ◽  
Edoardo Stellini ◽  
Giulia Brunello ◽  
Chiara Gardin ◽  
Letizia Ferroni ◽  
...  

Silver (Ag) ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs) may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cellsin vitroandin vivoin animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.


2020 ◽  
Vol 71 (2) ◽  
pp. 273-279
Author(s):  
Daniela Gitea ◽  
Andrei Teodorescu ◽  
Carmen Pantis ◽  
Delia Mirela Tit ◽  
Alexa Florina Bungau ◽  
...  

Silver nanoparticles (AgNPs) ranging in size from 1-100 nm show good application potential in many medical fields (therapies, medical devices, molecular diagnostics) due to their antimicrobial properties. The purpose of this study is to characterize from physicochemical perspective the colloidal dispersion obtained through phyto-synthesis. The existence of colloidal silver particles was visually highlighted through Thyndall effect. The bio-reduction of silver ions was analyzed through modern techniques, UV-VIS spectrophotometry and Hyperspectral Microscopy. After getting the colloidal dispersion, its antibacterial activity was proved by sowing on different plates the following types of pathogenic agents: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa. The UV-VIS spectrum for the methanolic extract with 10% H. perforatum L. and for the silver colloidal dispersions was achieved, observing a max at 455 nm. The hyperspectral images were achieved observing the shape, conformation, and the size of the obtained particles. During the antibacterial efficacy testing on those three strains of pathological agents, in all situations, the colloidal dispersion had a promising antimicrobial effect.


2018 ◽  
Vol 15 (4) ◽  
pp. 783-790 ◽  
Author(s):  
S. Rizwana Begum ◽  
D. Muralidhara Rao ◽  
P. Dinesh Sankar Reddy

Nanotechnology is a blazing field for the researchers in modern branch of science along with engineering have lot of applications. Nanotechnology is an imminent field with new outlet to fight and prevent many diseases using nanoparticles. Among the most promising materials Silver nanoparticles are having antimicrobial properties which are synthesized from medicinal plant and acts against chronic diseases. Silver nanoparticles synthesized from medicinal plants have lot of applications and eco-friendly, cost effective in nature. The present review article mainly focuses on biologically synthesized silver nanoparticles from medicinal plants and its role on cancer cells. Cancer is one of the most difficult health issues on globe. Although number of treatments may include radiation, chemotherapy and surgery, but these procedures not only targets tumor tissue but also normal healthy tissue. In recent years silver nanoparticles are considered as promising tool for cancer therapy. A numerous studies both in-vitro and in-vivo suggested that sliver nanoparticles can be used as cytotoxic and genotoxic agent due to their apoptotic inducing and anti-proliferative properties. However there is need to overlook the mechanism regarding the anti-cancerous activity. A silver nanoparticle deploys in every field of engineering science and medical sciences are still attracting to explore new scope of nanobiotechnology attributed with smaller size particles.


2007 ◽  
Vol 15 (5) ◽  
pp. 357-363 ◽  
Author(s):  
Dirk Pohle ◽  
Cornelia Damm ◽  
Johanna Neuhof ◽  
Alfons Rösch ◽  
Helmut Münstedt

Materials exhibiting an antimicrobial effect are especially advantageous for medical textiles which are in very close and long-term contact with human skin. Orthopaedic stockings made of terry cotton and polyamide were coated with silver nanoparticles by a simple dip coating process under mild conditions. Both textiles released silver ions over at least 28 days. The silver ion release for both materials is governed by diffusion. The amount of silver ions released by the cotton textile was higher than by the nylon stockings by about a factor of 4. The reason was a larger silver reservoir in the cotton sample, because it contains much more silver than the nylon fabric. As expected from the results of the Ag+ release tests, both these silver coated textiles were active against Escherichia coli.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 332
Author(s):  
Yurii A. Krutyakov ◽  
Alexey A. Kudrinskiy ◽  
Vladimir A. Kuzmin ◽  
Jaeho Pyee ◽  
Alexander A. Gusev ◽  
...  

Silver nanoparticles (AgNPs) are the most widely studied antimicrobial nanomaterials. However, their use in biomedicine is currently limited due to the availability of data that prove the nanosilver toxicity associated primarily with oxidative stress development in mammalian cells. The surface modification of AgNPs is a potent technique of improvement of their biocompatibility. The synthetic or natural compounds that combine zero or low toxicity towards human and animal organisms with inherent antimicrobial properties are the most promising stabilizing agents, their use would also minimize the risks of microorganisms developing resistance to silver-based materials. We used a simple technique to obtain 30–60 nm AgNPs stabilized with benzyldimethyl[3-myristoylamine)-propyl]ammonium chloride monohydrate (BAC)—a well-known active ingredient of many antibacterial drugs. The objective of the study was to assess the AgNPs-BAC entero- and hepatotoxicity to CBF1 mice upon enteral administration. The animals were exposed to 0.8–7.5 mg/kg doses of AgNPs-BAC in the acute and to 0.05–2.25 mg/kg doses of AgNPs-BAC in the subacute experiments. No significant entero- and hepatotoxic effects following a single exposure to doses smaller than 4 mg/kg were detected. Repeated exposure to the doses of AgNPs-BAC below 0.45 mg/kg and to the doses of BAC below 0.5 mg/kg upon enteral administration also led to no adverse effects. During the acute experiment, the higher AgNPs-BAC dose resulted in increased quantities of aminotransferases and urea, as well as the albumin-globulin ratio shift, which are indicative of inflammatory processes. Besides, the relative mass of the liver of mice was smaller compared to the control. During the subacute experiment, the groups treated with the 0.25–2.25 mg/kg dose of AgNPs-BAC had a lower weight gain rate compared to the control, while the groups treated with the 2.25 mg/kg dose of AgNPs-BAC showed statistically significant variations in the blood serum transaminases activity, which indicated hepatosis. It should be noted that the spleen and liver of the animals from the groups treated with the 0.45 and 2.25 mg/kg dose of AgNPs-BAC were more than two times smaller compared to the control. In the intestines of some animals from the group treated with the 2.25 mg/kg dose of AgNPs-BAC small areas of hyperemia and enlarged Peyer’s patches were observed. Histological examination confirmed the initial stages of the liver and intestinal wall inflammation.


2020 ◽  
Vol 31 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Stela Lima Farias de Miranda ◽  
Jennifer Toledo Damaceno ◽  
Marcelo Faveri ◽  
Luciene Cristina Figueiredo ◽  
Geisla Mary Silva Soares ◽  
...  

Abstract Periodontopathogenic subgingival biofilm is the main etiological agent of periodontitis. Thus, a search for antimicrobials as adjuvant for periodontal treatment in the literature is intense. Cetylpyridinium chloride (CPC) is a well-known antimicrobial agent commonly used in mouthrinses. However, CPC effects on a complex biofilm model were not found over the literature. Therefore, the aim of this manuscript is to evaluate 0.075% CPC antimicrobial properties in a multispecies subgingival biofilm model in vitro. The subgingival biofilm composed by 31 species related to periodontitis was formed for 7 days, using the calgary device. The treatments with CPC and chlorhexidine (CHX) 0.12% (as positive control) were performed 2x/day, for 1 min, from day 3 until the end of experimental period, totaling 8 treatments. After 7 days of biofilm formation, biofilm metabolic activity was evaluated by a colorimetric reaction and biofilms microbial composition by DNA-DNA hybridization. Statistical analysis was performed using ANOVA with data transformed via BOX-COX followed by Dunnett post-hoc. Both CPC and CHX reduced biofilm metabolic activity in 60% and presented antimicrobial activity against 13 different species. Specifically, only CHX reduced levels of F.n. vicentii and P. gingivalis while only CPC reduced A. odontolyticus and A. israelli. CPC was as effective as CHX as antimicrobial through in vitro complex multispecies subgingival biofilm. However, future studies using in vivo models of experimental periodontal disease should be performed to prove such effect.


2010 ◽  
Vol 35 (2) ◽  
pp. 183-185 ◽  
Author(s):  
Juan Francisco Hernández-Sierra ◽  
Enid Karina Salas-López ◽  
Fidel Martínez-Gutiérrez ◽  
Facundo Ruíz ◽  
Mauricio Pierdant-Pérez ◽  
...  

Dental caries is a worldwide public health problem. S mutans plays an important role in the etiology of caries. There have been studies that showed the antimicrobial properties of silver nanoparticles are an effective agent to diminish S. mutans. The objective of this study was to evaluate the bactericidal and bacteriostatic effects of silver nanoparticles in addition to the Gantrez S-27 copolymer, on S mutans. Method:We performed an in vitro experimental study using the liquid microdilution method in order to find the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with the subcultures obtained. The mixture was obtained by preparing 98 µg/mL of silver nanoparticles (10-3mol)with Gantrez S-27 2%, in distilled water. The readings were performed 24 hours after incubation and on 3 consecutive days. The results showed an average MIC of 6.12 µg /mL and MBC of 6.12 µg /mL.Conclusion: The addition of Gantrez 2% to silver nanoparticles does not alter its antimicrobial effect.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juliana Mattos Corrêa ◽  
Matsuyoshi Mori ◽  
Heloísa Lajas Sanches ◽  
Adriana Dibo da Cruz ◽  
Edgard Poiate ◽  
...  

Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time.


Sign in / Sign up

Export Citation Format

Share Document