scholarly journals Muscle stem cell and physical activity: what point is the debate at?

Open Medicine ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Gabriele Ceccarelli ◽  
Laura Benedetti ◽  
Maria Luisa Arcari ◽  
Cecilia Carubbi ◽  
Daniela Galli

AbstractIn the last 15 years, it emerged that the practice of regular physical activity reduces the risks of many diseases (cardiovascular diseases, diabetes, etc.) and it is fundamental in weight control and energy consuming to contrast obesity. Different groups proposed many molecular mechanisms as responsible for the positive effects of physical activity in healthy life. However, many points remain to be clarified. In this mini-review we reported the latest observations on the effects of physical exercise on healthy skeletal and cardiac muscle focusing on muscle stem cells. The last ones represent the fundamental elements for muscle regeneration post injury, but also for healthy muscle homeostasis.Interestingly, in both muscle tissues the morphological consequence of physical activity is a physiological hypertrophy that depends on different phenomena both in differentiated cells and stem cells. The signaling pathways for physical exercise effects present common elements in skeletal and cardiac muscle, like activation of specific transcription factors, proliferative pathways, and cytokines. More recently, post translational (miRNAs) or epigenetic (DNA methylation) modifications have been demonstrated. However, several points remain unresolved thus requiring new research on the effect of exercise on muscle stem cells.

2020 ◽  
Vol 21 (11) ◽  
pp. 3790
Author(s):  
Greg Hutchings ◽  
Krzysztof Janowicz ◽  
Lisa Moncrieff ◽  
Claudia Dompe ◽  
Ewa Strauss ◽  
...  

Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Seung-Cheol Lee ◽  
Yoo-Jung Lee ◽  
Min Kyoung Shin ◽  
Jung-Suk Sung

Human mesenchymal stem cells derived from adipose tissue (hADMSCs) are a desirable candidate in regenerative medicine. hADMSCs secrete growth factors, cytokines, and chemokines and also express various receptors that are important in cell activation, differentiation, and migration to injured tissue. We showed that the expression level of chemokine receptor CXCR6 was significantly increased by ~2.5-fold in adipogenic-differentiated cells (Ad), but not in osteogenic-differentiated cells (Os) when compared with hADMSCs. However, regulation of CXCR6 expression on hADMSCs by using lentiviral particles did not affect the differentiation potential of hADMSCs. Increased expression of CXCR6 on Ad was mediated by both receptor recycling, which was in turn regulated by secretion of CXCL16, and de novo synthesis. The level of soluble CXCL16 was highly increased in both Ad and Os in particular, which inversely correlates with the expression on a transmembrane-bound form of CXCL16 that is cleaved by disintegrin and metalloproteinase. We concluded that the expression of CXCR6 is regulated by receptor degradation or recycling when it is internalized by interaction with CXCL16 and by de novo synthesis of CXCR6. Overall, our study may provide an insight into the molecular mechanisms of the CXCR6 reciprocally expressed on differentiated cells from hADMSCs.


2020 ◽  
Vol 21 (4) ◽  
pp. 1477
Author(s):  
Mauro Vaccarezza ◽  
Veronica Papa ◽  
Daniela Milani ◽  
Arianna Gonelli ◽  
Paola Secchiero ◽  
...  

In the last two decades, new insights have been gained regarding sex/gender-related differences in cardiovascular disease (CVD). CVD represents the leading cause of death worldwide in both men and women, accounting for at least one-third of all deaths in women and half of deaths in women over 50 years in developing countries. Important sex-related differences in prevalence, presentation, management, and outcomes of different CVDs have been recently discovered, demonstrating sex/gender-specific pathophysiologic features in the presentation and prognosis of CVD in men and women. A large amount of evidence has highlighted the role of sex hormones in protecting women from CVDs, providing an advantage over men that is lost when women reach the menopause stage. This hormonal-dependent shift of sex-related CVD risk consequently affects the overall CVD epidemiology, particularly in light of the increasing trend of population aging. The benefits of physical activity have been recognized for a long time as a powerful preventive approach for both CVD prevention and aging-related morbidity control. Exercise training is indeed a potent physiological stimulus, which reduces primary and secondary cardiovascular events. However, the underlying mechanisms of these positive effects, including from a sex/gender perspective, still need to be fully elucidated. The aim of this work is to provide a review of the evidence linking sex/gender-related differences in CVD, including sex/gender-specific molecular mediators, to explore whether sex- and gender-tailored physical activity may be used as an effective tool to prevent CVD and improve clinical outcomes in women.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Dario Coletti ◽  
Paola Aulino ◽  
Eva Pigna ◽  
Fabio Barteri ◽  
Viviana Moresi ◽  
...  

Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.


Retos ◽  
2021 ◽  
Vol 44 ◽  
pp. 370-385
Author(s):  
Igor Cigarroa ◽  
Estefanía Díaz ◽  
Constanza Ortiz ◽  
Raquel Otero ◽  
Irene Cantarero ◽  
...  

There is a discrepancy about the characteristics and effects of exercise-based programs in older cancer survivors (OCS). Therefore, this scoping review aimed to identify the characteristics and effects of physical activity programs in OCS health. This scoping review followed the PRISMA guidelines and included randomized clinical trials and clinical trials from MEDLINE by PubMed, Scopus, Scielo, and PEDro, published between 2010 and 2020. Results suggest that physical programs were carried out in health centers (54.2%) and were based on physical exercise (74.4%). The length of the exercise interventions was between 3–6 months (87.5%) was performed 2–3 times per week (73.1%) with a duration between 20–60 minutes (78.2%) and was run by health professionals (94.4%). The health outcomes with the most positive effects were physical activity, depression, and quality of life. In conclusion, physical programs for OCS based on aerobic exercises are safe and could be a therapeutic strategy to improve different health markers in OCS.  Resumen. En la literatura existe discrepancia sobre las características y los efectos de los programas basados en el ejercicio físico en sobrevivientes de cáncer (SC) de edad avanzada. Por lo tanto, esta revisión de alcance tuvo como objetivo identificar las características y los efectos de los programas de actividad física en la salud de personas SC de edad avanzada. Esta revisión de ensayos clínicos aleatorizados y ensayos clínicos, se realizó considerando las siguientes bases de datos: MEDLINE (de Pubmed), Scopus, Scielo y PEDro, entre los años 2010 y 2020. Los resultados indican que los programas de ejercicio se realizaron en centros de salud (54.2%), y se basaron en ejercicio físico principalmente (74.4%). La extensión de las intervenciones físicas fue entre 3–6 meses (87.5%), se realizaron 2–3 veces por semana (73.1%) con una duración entre 20–60 minutos, y fueron dirigidas por profesionales de salud (94.4%). El impacto sobre la salud con mayores efectos positivos fueron la actividad física, la depresión y la calidad de vida. En conclusión, los programas de ejercitación física para personas SC en edad avanzada, basados en ejercicios aeróbicos son seguros y podrían ser una estrategia terapéutica para mejorar diferentes variables de salud en este grupo de personas.


Author(s):  
Sherif A. Mohamad ◽  
Michael R. Milward ◽  
Mohammed A. Hadis ◽  
Sarah A. Kuehne ◽  
Paul R. Cooper

AbstractMesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.


2020 ◽  
Vol 5 (4) ◽  
pp. 94
Author(s):  
Laura Vizzi ◽  
Elvira Padua ◽  
Agata Grazia D’Amico ◽  
Virginia Tancredi ◽  
Giovanna D’Arcangelo ◽  
...  

Studies on the effectiveness of physical exercise to treat and/or prevent mental disorders are essential and particularly appropriate, given the rapid growth of the elderly population and the consequent increase in the prevalence of neurodegenerative diseases. The onset of neurodegenerative diseases is subtle, and progression is irreversible, as there is still no cure capable of stopping them permanently. Therefore, we should not underestimate these diseases and should immediately begin to combine the treatment with physical activity adapted to specific needs. Indeed, it is well known that physical activity has positive effects on mobility, autonomy, and functional capacity, improving not only cognitive functions, but also reducing the risk of developing dementia. Despite several studies in this field, to date there are no specific and effective protocols that promote physical exercise in people with dementia. Based on this evidence, the aim of the present work was to verify whether an adapted physical exercise regimen could promote the maintenance of psychomotor functions in elderly subjects and, therefore, delay the irreversible effects of combinations of dementia and other pathologies associated with aging. Our results clearly show that exercise is very effective in improving psychomotor functions and delaying the progress of neurodegenerative diseases in humans, since we observed that the subjects maintained their cognitive skills after 8 months of physical activity, moreover, two patients presented an amelioration. Based on the results obtained, we recommend that the motor practice, in any chosen form, be considered an integral part of prevention programs based on an active lifestyle in older people. Future studies will be necessary to establish how long lasting the benefits of a specific physical activity are and whether they are enough to delay cognitive decline.


Author(s):  
DC Turner ◽  
PP Gorski ◽  
MF Maasar ◽  
RA Seaborne ◽  
P Baumert ◽  
...  

AbstractSkeletal muscle tissue demonstrates global hypermethylation with aging. However, methylome changes across the time-course of differentiation in aged human muscle derived stem cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged muscle stem cells over several time points of differentiation (0, 72 hours, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; ‘pathways-in-cancer’ (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), ‘rap1-signaling’, ‘axon-guidance’ and ‘hippo-signalling’. Aged muscle stem cells also demonstrated a hypermethylated profile in pathways; ‘axon-guidance’, ‘adherens-junction’ and ‘calcium-signaling’, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alteration in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in the ‘focal adhesion’ and ‘PI3K-AKT signalling’ pathways. While the methylomes were vastly different between muscle tissue and isolated muscle stem cells, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle and tissue and stem cells (on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P). Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6-8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and muscle stem cells and increased physical activity may help prevent age-related epigenetic changes in these HOX genes.


2021 ◽  
Vol 68 (3) ◽  
pp. 383-389
Author(s):  
Sebastian Romeo Pintilie ◽  
◽  
Alice D. Condrat ◽  
Adriana Fodor ◽  
Adela-Viviana Sitar-Tăut ◽  
...  

Physical exercises have long been linked to numerous health improvements, ranging from cardiovascular to psychiatric. In this review, we take a closer look on its anatomical, physiological and chemical effects on the brain. Starting from the clinical to the cellular level, we will analyze the neurogenesis, anti-inflammatory effects on Brain-Blood Barrier and synaptic plasticity, outlining known molecular aspects that are influenced by physical activity, such as: gene expression, changes of growth factors and neurotransmitter levels and means of reverting molecular mechanisms of ageing. The brain derived neurotrophic factor (BDNF) is one of the central molecules that links the physical exercise to neurogenesis, neuroprotection, cognitive functions, dendritic growth, memory formation and many more. We indicate the correlation between physical activity and mental health in diseases like depression, Alzheimer’s dementia and Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document