scholarly journals Neuroprotective effects of physical exercise: Implications in health and disease

2021 ◽  
Vol 68 (3) ◽  
pp. 383-389
Author(s):  
Sebastian Romeo Pintilie ◽  
◽  
Alice D. Condrat ◽  
Adriana Fodor ◽  
Adela-Viviana Sitar-Tăut ◽  
...  

Physical exercises have long been linked to numerous health improvements, ranging from cardiovascular to psychiatric. In this review, we take a closer look on its anatomical, physiological and chemical effects on the brain. Starting from the clinical to the cellular level, we will analyze the neurogenesis, anti-inflammatory effects on Brain-Blood Barrier and synaptic plasticity, outlining known molecular aspects that are influenced by physical activity, such as: gene expression, changes of growth factors and neurotransmitter levels and means of reverting molecular mechanisms of ageing. The brain derived neurotrophic factor (BDNF) is one of the central molecules that links the physical exercise to neurogenesis, neuroprotection, cognitive functions, dendritic growth, memory formation and many more. We indicate the correlation between physical activity and mental health in diseases like depression, Alzheimer’s dementia and Parkinson’s disease.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1542
Author(s):  
Grazia Maugeri ◽  
Velia D’Agata ◽  
Benedetta Magrì ◽  
Federico Roggio ◽  
Alessandro Castorina ◽  
...  

The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles Finsterwald ◽  
Sara Dias ◽  
Pierre J. Magistretti ◽  
Sylvain Lengacher

Gangliosides are major constituents of the plasma membrane and are known to promote a number of physiological actions in the brain, including synaptic plasticity and neuroprotection. In particular, the ganglioside GM1 was found to have a wide range of preclinical and clinical benefits in brain diseases such as spinal cord injury, Huntington’s disease and Parkinson’s disease. However, little is known about the underlying cellular and molecular mechanisms of GM1 in the brain. In the present study, we show that GM1 exerts its actions through the promotion of glycolysis in astrocytes, which leads to glucose uptake and lactate release by these cells. In astrocytes, GM1 stimulates the expression of several genes involved in the regulation of glucose metabolism. GM1 also enhances neuronal mitochondrial activity and triggers the expression of neuroprotection genes when neurons are cultured in the presence of astrocytes. Finally, GM1 leads to a neuroprotective effect in astrocyte-neuron co-culture. Together, these data identify a previously unrecognized mechanism mediated by astrocytes by which GM1 exerts its metabolic and neuroprotective effects.


2019 ◽  
Vol 20 (2) ◽  
pp. 330 ◽  
Author(s):  
Audrey Lafrenaye ◽  
J. Simard

Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.


2021 ◽  
Vol 20 (3) ◽  
pp. 16-25
Author(s):  
Vladimir E. Vladimirsky ◽  
Evgeniy V. Vladimirsky ◽  
Anna N. Lunina ◽  
Anatoliy D. Fesyun ◽  
Andrey P. Rachin ◽  
...  

The review analyzes the data of scientific publications on the effects of molecular mechanisms initiated by physical exertion on thefunction of the cardiovascular system and the course of cardiac diseases. As practice and a number of evidence-based studies haveshown, the beneficial effects of physical activity on the outcomes of diseases in a number of cardiac nosologies are comparable todrug treatment. Numerous mechanisms mediate the benefits of regular exercise for optimal cardiovascular function. Exercises causewidespread changes in numerous cells, tissues, and organs in response to increased metabolic demand, including adaptation of thecardiovascular system. Physical exercises, which include various types of aerobic exercises of varying intensity and duration, is animportant component of the therapeutic treatment of patients with cardiovascular diseases. Knowledge of the molecular basis ofthe physical activity impact on the cardiovascular system makes it possible to use biochemical markers to assess the effectiveness ofrehabilitation programs.


J ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 116-127
Author(s):  
Pengxiang Zhu ◽  
Masahiro Sakanaka

Red ginseng, as an effective herbal medicine, has been traditionally and empirically used for the treatment of neuronal diseases. Many studies suggest that red ginseng and its ingredients protect the brain and spinal cord from neural injuries such as ischemia, trauma, and neurodegeneration. This review focuses on the molecular mechanisms underlying the neuroprotective effects of red ginseng and its ingredients. Ginsenoside Rb1 and other ginsenosides are regarded as the active ingredients of red ginseng; the anti-apoptotic, anti-inflammatory, and anti-oxidative actions of ginsenosides, together with a series of bioactive molecules relevant to the above actions, appear to account for the neuroprotective effects in vivo and/or in vitro. Moreover, in this review, the possibility is raised that more effective or stable neuroprotective derivatives based on the chemical structures of ginsenosides could be developed. Although further studies, including clinical trials, are necessary to confirm the pharmacological properties of red ginseng and its ingredients, red ginseng and its ingredients could be promising candidate drugs for the treatment of neural injuries.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2347
Author(s):  
Anna Atlante ◽  
Giuseppina Amadoro ◽  
Antonella Bobba ◽  
Valentina Latina

A new epoch is emerging with intense research on nutraceuticals, i.e., “food or food product that provides medical or health benefits including the prevention and treatment of diseases”, such as Alzheimer’s disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota–gut–brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.


Author(s):  
Roman A. Kireev ◽  
Sara Cuesta ◽  
Elena Vara ◽  
Jesus A.F. Tresguerres

AbstractAging of the brain causes important reductions in quality of life and has wide socio-economic consequences. An increase in oxidative stress, and the associated inflammation and apoptosis, could be responsible for the pathogenesis of aging associated brain lesions. Melatonin has neuroprotective effects, by limiting the negative effects of oxygen and nitrogen free radicals. Growth hormone (GH) might exert additional neuro-protective and or neurogenic effects on the brain. The molecular mechanisms of the protective effects of GH and melatonin on the aging brain have been investigated in young and old Wistar rats. A reduction in the total number of neurons in the hilus of the dentate gyrus was evident at 24 months of age and was associated with a significant increase in inflammation markers as well as in pro-apoptotic parameters, confirming the role of apoptosis in its reduction. Melatonin treatment was able to enhance neurogenesis in old rats without modification of the total number of neurons, whereas GH treatment increased the total number of neurons without enhancing neurogenesis. Both GH and melatonin were able to reduce inflammation and apoptosis in the hippocampus. In conclusion, neuroprotective effects demonstrated by GH and melatonin in the hippocampus were exerted by decreasing inflammation and apoptosis.


2021 ◽  
pp. 026119292110525
Author(s):  
Anaguiven Avalos-Soriano ◽  
Alejandra García-Gasca ◽  
Beatriz Yáñez-Rivera

Two cell lines derived from the brain and heart of a Pacific white snook specimen ( Centropomus viridis) were developed and evaluated in terms of their responsiveness to glyphosate-induced cytotoxicity. The cells were grown in Leibovitz-15 (L-15) medium supplemented with 10% fetal bovine serum (FBS) and were passaged 36 times. Growth was tested at different concentrations of FBS (5, 10 and 20%) at 27°C. The cell lines were cryopreserved at different passages and were successfully thawed, with a survival rate greater than 80% without detectable contamination. At passage 36, the cells were used to assess the deleterious effects of glyphosate, and cell proliferation was measured by direct counting and with the MTT assay. Similar LC50 values were obtained with both methods. Although the principles behind these two assessment methods differ, our results show that both are suitable for evaluating glyphosate toxicity. In addition, heart- and brain-derived cells showed similar sensitivity, suggesting that the same mode of action might be responsible for the toxicity of glyphosate at the cellular level. The newly developed Pacific white snook brain and heart cell lines could be useful to investigate cellular and molecular mechanisms of toxicity, satisfying the need to reduce the use of animals in experiments. Glyphosate-related toxicological data obtained in the present study will allow us to continue investigating the effects of this herbicide directly on brain and heart fish cells since similar studies have only been carried out on either live organisms or on human cell lines such as neuroblastoma, which are immortalised by oncogenes or similar.


Open Medicine ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Gabriele Ceccarelli ◽  
Laura Benedetti ◽  
Maria Luisa Arcari ◽  
Cecilia Carubbi ◽  
Daniela Galli

AbstractIn the last 15 years, it emerged that the practice of regular physical activity reduces the risks of many diseases (cardiovascular diseases, diabetes, etc.) and it is fundamental in weight control and energy consuming to contrast obesity. Different groups proposed many molecular mechanisms as responsible for the positive effects of physical activity in healthy life. However, many points remain to be clarified. In this mini-review we reported the latest observations on the effects of physical exercise on healthy skeletal and cardiac muscle focusing on muscle stem cells. The last ones represent the fundamental elements for muscle regeneration post injury, but also for healthy muscle homeostasis.Interestingly, in both muscle tissues the morphological consequence of physical activity is a physiological hypertrophy that depends on different phenomena both in differentiated cells and stem cells. The signaling pathways for physical exercise effects present common elements in skeletal and cardiac muscle, like activation of specific transcription factors, proliferative pathways, and cytokines. More recently, post translational (miRNAs) or epigenetic (DNA methylation) modifications have been demonstrated. However, several points remain unresolved thus requiring new research on the effect of exercise on muscle stem cells.


Sign in / Sign up

Export Citation Format

Share Document