scholarly journals Advances in the role of miRNAs in the occurrence and development of osteosarcoma

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1003-1011
Author(s):  
Guanyu Zhang ◽  
Yiran Li ◽  
Jiasheng Xu ◽  
Zhenfang Xiong

AbstractOsteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.

2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2019 ◽  
Vol 20 (21) ◽  
pp. 5423 ◽  
Author(s):  
Mirza Muhammad Fahd Qadir ◽  
Dagmar Klein ◽  
Silvia Álvarez-Cubela ◽  
Juan Domínguez-Bendala ◽  
Ricardo Luis Pastori

Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.


2019 ◽  
Vol 84 (6) ◽  
pp. 233-239
Author(s):  
Xu Hui ◽  
Hisham Al-Ward ◽  
Fahmi Shaher ◽  
Chun-Yang Liu ◽  
Ning Liu

<b><i>Background:</i></b> MicroRNAs (miRNAs) represent a group of non-coding RNAs measuring 19–23 nucleotides in length and are recognized as powerful molecules that regulate gene expression in eukaryotic cells. miRNAs stimulate the post-transcriptional regulation of gene expression via direct or indirect mechanisms. <b><i>Summary:</i></b> miR-210 is highly upregulated in cells under hypoxia, thereby revealing its significance to cell endurance. Induction of this mRNA expression is an important feature of the cellular low-oxygen response and the most consistent and vigorous target of HIF. <b><i>Key Message:</i></b> miR-210 is involved in many cellular functions under the effect of HIF-1α, including the cell cycle, DNA repair, immunity and inflammation, angiogenesis, metabolism, and macrophage regulation. It also plays an important regulatory role in T-cell differentiation and stimulation.


2013 ◽  
Vol 709 ◽  
pp. 858-861
Author(s):  
De Ming Han ◽  
Zi Jun Shen ◽  
Li Hui Zhao

MicroRNAs are small non-coding RNAs that act at the post-transcriptional level, regulating protein expression by repressing translation or destabilizing mRNA target. We searched information about miR-155 in miRBase. Target genes of miR-155 are predicted by four miRNA target gene prediction softwares. The result shows that miR-155 was involved in proliferation, differentiation and apoptosis. These results can contribute to further study on the role of microRNA in diagnosis and treatment of cancer.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Yang XIANG ◽  
Xuechong XIONG ◽  
Jin WEN ◽  
Yangxi PENG ◽  
Rongjun LIU ◽  
...  

Due to the wide application of ceramics in electronic device packaging, the performance of ceramic metallization layer directly determines the performance of the whole package device. This paper introduces the main preparation methods of ceramic metallization, discusses the influence of Mo powder size, metallization formula, sintering temperature and other factors on the performance of ceramic metallization layer prepared by activated Mo-Mn method, and introduces several kinds of methods that can be tested to test the performance of ceramic metallized sealing samples. A new research direction of Ceramic Metallization Technology in the advanced field is put forward.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dandan Song ◽  
Jianhua Hou ◽  
Junduo Wu ◽  
Junnan Wang

Despite treatments being improved and many risk factors being identified, cardiovascular disease (CVD) is still a leading cause of mortality and disability worldwide. N6-methyladenosine (m6A) is the most common, abundant, and conserved internal modification in RNAs and plays an important role in the development of CVD. Many studies have shown that aabnormal m6A modifications of coding RNAs are involved in the development of CVD. In addition, non-coding RNAs (ncRNAs) exert post-transcriptional regulation in many diseases including CVD. Although ncRNAs have also been found to be modified by m6A, the studies on m6A modifications of ncRNAs in CVD are currently lacking. In this review, we summarized the recent progress in understanding m6A modifications in the context of coding RNAs and ncRNAs, as well as their regulatory roles in CVD.


2022 ◽  
Vol 50 (1) ◽  
pp. 9-16
Author(s):  
Jia-ying Yuan ◽  
Zhi-ying Tong ◽  
Yu-chao Dong ◽  
Jia-yi Zhao ◽  
Yan Shang

Bronchial asthma is a common chronic airway disease, and long-term management of asthma is the focus and difficulty of clinical treatment. Glucocorticoids are often used as the first choice for the treatment of asthma. However, the occurrence of hormone dependence, hormone resistance, local and systemic adverse reactions caused by hormone application also brings problems for the treatment of asthma. Finding safe and effective new therapeutic drugs is an important research direction at present. Icariin is the effective ingredient of traditional Chinese medicine Epimedium. It has various biological activities such as anti-inflammatory, anti-oxidative stress, and immune regulation. It has high safety and has a wide range of clinical applications. Icariin has the characteristics of multi-target intervention in the treatment of asthma. This article reviews recent studies in order to provide new research directions for further therapeutic drug development.


2020 ◽  
Vol 9 (4) ◽  
pp. 297-304
Author(s):  
O. A. Beylerli ◽  
I. F. Gareev ◽  
V. N. Pavlov ◽  
Zhao Shiguang ◽  
Chen Xin ◽  
...  

Extensive study of extracellular vesicles began about ten years ago. Exosomes are extracellular membrane vesicles 30–100 nm in diameter secreted by various types of cells and present in most biological fluids. For a long time they were considered non-functional cellular components. However, it has been proven that they serve as a means of intercellular exchange of information. They can move bioactive molecules such as proteins, lipids, RNA, and DNA. Several studies have shown that their contents, including proteins and non-coding nucleic acids, may be of particular interest as biomarkers of diseases. The most promising of all these molecules are non-coding RNAs (ncRNAs), including microRNAs and long non-coding RNAs (lncRNAs). LncRNAs are a large group of non-coding RNAs (ncRNAs) longer than 200 nucleotides. As regulatory factors lncRNAs play an important role in complex cellular processes, such as apoptosis, growth, differentiation, proliferation, etc. Despite many advances in diagnosis and treatment (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public healthcare problems worldwide. Every day brings a better understanding of the role of exosomes in the development of cancer and metastases. Liquid biopsy has been developed as a method for the detection of cancer at an early stage. This is a series of minimally invasive tests of bodily fluids offering the advantage of real-time tracking of the tumour development. In fact, circulating exosomal lncRNAs have been found to be closely linked to processes of oncogenesis, metastasis and treatment. In this paper we review current studies into the functional role of exosomal lncRNAs in cancer and discuss their potential clinical use as diagnostic biomarkers and therapeutic targets for cancer.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Miao Da ◽  
Jing Zhuang ◽  
Yani Zhou ◽  
Quan Qi ◽  
Shuwen Han

AbstractLong non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.


Sign in / Sign up

Export Citation Format

Share Document