scholarly journals Mechanical properties of nanomaterials: A review

2020 ◽  
Vol 9 (1) ◽  
pp. 259-273 ◽  
Author(s):  
Qiong Wu ◽  
Wei-shou Miao ◽  
Yi-du Zhang ◽  
Han-jun Gao ◽  
David Hui

AbstractAs an emerging material, nanomaterials have attracted extensive attention due to their small size, surface effect and quantum tunneling effect, as well as potential applications in traditional materials, medical devices, electronic devices, coatings and other industries. Herein, the influence of nanoparticle selection, production process, grain size, and grain boundary structures on the mechanical properties of nanomaterials is introduced. The current research progress and application range of nano-materials are presented. The unique properties of nano-materials make them superior over traditional materials. Therefore, nanomaterials will have a broader application prospect in the future. Research on nanomaterials is significant for the development and application of materials science.

2021 ◽  
Vol 18 (4) ◽  
pp. 735-763
Author(s):  
Jinkai Xu ◽  
Qianqian Cai ◽  
Zhongxu Lian ◽  
Zhanjiang Yu ◽  
Wanfei Ren ◽  
...  

AbstractThanks to its excellent mechanical properties, magnesium alloys have many potential applications in the aerospace and other fields. However, failure to adequately solve corrosion problems of magnesium alloy becomes one of the factors restricting its wide use in many industrial fields. Inspired by nature, researchers designed and fabricated bio-inspired water-repellent (superhydrophobic and slippery liquid-infused porous surface) surfaces with special wetting properties by exploring the surface microstructures of plants and animals such as lotus leaf and nepenthes pitcher, exhibiting excellent corrosion-resistant performance. This article summarizes the research progress on corrosion resistance of magnesium alloys with bio-inspired water-repellent properties in recent years. It mainly introduces the corrosion reasons, types of corrosion of magnesium alloys, and the preparation of magnesium alloys with bio-inspired water-repellent properties to improve corrosion resistance. In particular, it is widely used and effective to construct water-repellent and anti-corrosion coating on the surface of magnesium alloy by surface treatment. It is hoped that the research in this review can broaden the application range of magnesium alloys and provide a powerful reference for the future research on corrosion resistance of magnesium alloys.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2019 ◽  
Vol 12 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Guanghui Zhao ◽  
Jijia Zhong ◽  
Y.X. Zhang

Background: Short carbon fibre reinforced epoxy composites have many advantages such as high strength-to-weight ratio, corrosion resistance, low cost, short fabrication time and easy manufacturing. Researches on the mechanical performance of the composites are mainly carried out by means of experimental techniques and numerical calculation. Objective: The study aims to report the latest progress in the studies of mechanical properties of short carbon fibre reinforced epoxy composites. Methods: Based on recently published patents and journal papers, the experimental studies of short carbon fibre reinforced epoxy composites are reviewed and the effects of short carbon fibre on the mechanical properties of the composites are discussed. Numerical studies using representative volume element in simulating macroscopic mechanical properties of the short fibre reinforced composites are also reviewed. Finally, future research of short carbon fibre reinforced epoxy composites is proposed. Results: Experimental techniques, experimental results and numerical simulating methods are discussed. Conclusion: Mechanical properties of epoxy can be improved by adding short carbon fibres. Fiber surface treatment and matrix modification are effective in enhancing interfacial adhesion between fiber and matrix, and as a result, better mechanical performance is achieved. Compared to the studies on equivalent mechanical properties of the composites, researches on the micro-mechanism of interaction between fiber and matrix are still in infancy due to the complexity of both the internal structure and reinforcing mechanism.


Author(s):  
Rucha Shah ◽  
Triveni M. Gowda ◽  
Raison Thomas ◽  
Tarun Kumar

: Liquid or injectable platelet rich fibrin (PRF) is a second-generation platelet concentrate which is completely autologous and free of external additives like bovine thrombin and calcium chloride. Additionally, it is the only one to be obtained in a liquid form among the second generation platelet concentrates. This allows for wide applications such as to maximize injections or mixing with biomaterials such as bone grafts or antibiotics. Since it was first introduced in 2015, several modifications of the original protocol have been proposed which aim at maximizing its biological and mechanical properties. This includes changes in centrifugation speed, time, and so on. The aim of this review is to summarize the various modifications of the injectable/liquid formation of PRF as well as to discuss the potential applications and future research direction.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2476
Author(s):  
Aofei Guo ◽  
Zhihui Sun ◽  
Noppadon Sathitsuksanoh ◽  
Hu Feng

The development of the concrete industry is always accompanied by some environmental issues such as global warming and energy consumption. Under this circumstance, the application of nanocellulose in cementitious materials is attracting more and more attention in recent years not only because of its renewability and sustainability but also because of its unique properties. To trace the research progress and provide some guidance for future research, the application of nanocellulose to cementitious materials is reviewed. Specifically, the effects of cellulose nanocrystal (CNC), cellulose nanofibril (CNF), bacterial cellulose (BC), and cellulose filament (CF) on the physical and fresh properties, hydration, mechanical properties, microstructure, rheology, shrinkage, and durability of cementitious materials are summarized. It can be seen that the type, dosage, and dispersion of nanocellulose, and even the cementitious matrix type can lead to different results. Moreover, in this review, some unexplored topics are highlighted and remain to be further studied. Lastly, the major challenge of nanocellulose dispersion, related to the effectiveness of nanocellulose in cementitious materials, is examined in detail.


Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 761-781 ◽  
Author(s):  
Hongwei Chu ◽  
Ying Li ◽  
Cong Wang ◽  
Han Zhang ◽  
Dechun Li

AbstractCarbon nanotubes (CNTs) are carbon based nanomaterials with long hollow structure and diameter at the nanometer scale. The chirality in combination with the radius determines the unique properties of CNTs. These CNTs with different properties have wide applications in the nanotechnology, electronics, photonics, and other fields in materials science and technology. In this review, we highlight the recent investigations on the nonlinear optical properties and applications in the lasers. The future research aspects and potential applications are discussed at the end of the review.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 713 ◽  
Author(s):  
Linlin Shi ◽  
Qiangbing Liang ◽  
Wenyan Wang ◽  
Ye Zhang ◽  
Guohui Li ◽  
...  

Organic photomultiplication photodetectors have attracted considerable research interest due to their extremely high external quantum efficiency and corresponding high detectivity. Significant progress has been made in the aspects of their structural design and performance improvement in the past few years. There are two types of organic photomultiplication photodetectors, which are made of organic small molecular compounds and polymers. In this paper, the research progress in each type of organic photomultiplication photodetectors based on the trap assisted carrier tunneling effect is reviewed in detail. In addition, other mechanisms for the photomultiplication processes in organic devices are introduced. Finally, the paper is summarized and the prospects of future research into organic photomultiplication photodetectors are discussed.


2013 ◽  
Vol 365-366 ◽  
pp. 788-794
Author(s):  
Yu Xin Qin ◽  
Yu Qing Wang ◽  
Xiao Jing Chen ◽  
Zhi Guo Li

After the coal-mine accident, to get information of the coal-mine accident has become the key of disaster rescue and relief, and after disaster, the environment is very bad, the rescue-workers cant arrive at the scene of the accident to obtain information at the first time, so the coal-mine rescue robot was brought into being, it can reach the place where the person hard to go to implement the detection of information and rescue. This paper introduces the research status of coal-mine rescue robot. According to the different methods of navigation, this paper explained the research progress of the methods for robot navigation, and made a summary and prospect for its potential applications and future research work.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1796
Author(s):  
Sebastian Cozma ◽  
Rodica Vlǎdoiu ◽  
Aurelia Mandes ◽  
Virginia Dinca ◽  
Gabriel Prodan ◽  
...  

The current work aimed to characterize the morphology, chemical, and mechanical properties of Pt and PtTi thin films deposited via thermionic vacuum arc (TVA) method on glass and silicon substrates. The deposited thin films were characterized by means of a scanning electron microscope technique (SEM). The quantitative elemental microanalysis was done using energy-dispersive X-ray spectroscopy (EDS). The tribological properties were studied by a ball-on-disc tribometer, and the mechanical properties were measured using nanoindentation tests. The roughness, as well as the micro and nanoscale features, were characterized using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The wettability of the deposited Pt and PtTi thin films was investigated by the surface free energy evaluation (SFE) method. The purpose of our study was to prove the potential applications of Pt-based thin films in fields, such as nanoelectronics, fuel cells, medicine, and materials science.


Sign in / Sign up

Export Citation Format

Share Document