Towards novel wound dressings: antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly(vinyl alcohol) hybrids

2015 ◽  
Vol 35 (6) ◽  
pp. 575-586 ◽  
Author(s):  
Tongsai Jamnongkan ◽  
Sathish K. Sukumaran ◽  
Masataka Sugimoto ◽  
Tomijiro Hara ◽  
Yumiko Takatsuka ◽  
...  

Abstract Zinc oxide (ZnO) nanoparticles possess antibacterial properties. Being less toxic to humans than silver, they are attractive as antibacterial agents in biomedical applications. In this study, we focus on the influence of the size of ZnO nanoparticles on their antibacterial action against strains of three bacteria: one Gram-negative, Escherichia coli and two Gram-positive, Bacillus subtilis and Staphylococcus aureus. The antibacterial efficacy of the nanoparticles increases with decreasing particle size. A major contributor to antibacterial action is the oxidative stress induced by the ZnO. To understand the relationship between antibacterial action and induced oxidative stress, we measured the dependence of the nanoparticle diameter on H2O2 concentration. Even at a fixed nanoparticle concentration, the H2O2 concentration increased with decreasing nanoparticle diameter. This is qualitatively similar to the dependence of the antibacterial activity on the nanoparticle diameter. In addition, in the presence of ZnO nanoparticles, we detected increased quantities of endogenous H2O2 in the E. coli. For use as antibacterial wound dressings, we fabricated nonwoven fiber mats from poly(vinyl alcohol) (PVA)/ZnO nanoparticle suspensions. The antibacterial efficacy of the PVA/ZnO electrospun fiber mats also increased with a decrease in the diameter and an increase in the concentration of the ZnO nanoparticles.

Author(s):  
Nurul Amira Ahmad Yusof ◽  
Norashikin Mat Zain ◽  
Norlin Pauzi

Nowadays, zinc oxide (ZnO) has attracted attention in research and development because of its remarkable antibacterial properties. Chitosan/ZnO nanoparticles were successfully synthesized via microwave heating. The objectives of this work were to investigate the effect of stabilizer, power heating and time heating on size of chitosan/ZnO nanoparticles and to determine antibacterial activity against pathogenic bacteria, where chitosan was used as a stabilizing agent. Chitosan/ZnO nanoparticles were analyzed  by Fourier Transform Infra Red (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Zetasizer instrument. The power heating and time heating were varied from 400 to 800 Watt and 4 to 8 minutes, respectively. The presence of chitosan has role on preventing the nanoparticles from agglomeration by producing a milky solution of chitosan/ZnO nanoparticles without any suspensions. The increase of power  and time heating improved the size of nanoparticles. The peak in FTIR spectrum at around 427 cm-1 was confirmed the existence of the ZnO phase. XRD patterns showed that the chitosan/ZnO nanoparticles materials were pure phase with average crystalline size is 130 nm. FESEM revealed that chitosan/ZnO nanoparticles were uniformly distributed with the mean value of size is 70 nm and spherical shaped. Further impact of power and time heating on the size of the chitosan/ZnO nanoparticles can be shown by a nanoparticles size distribution with the average of 30 to 90 nm. The results showed that chitosan/ZnO nanoparticles have displayed an antibacterial inhibition zone against Gram-positive S. aureus and Gram-negative E. coli which 16.0 and 13.3 mm, respectively. Chitosan/ZnO nanoparticles were synthesized in this work presented have potential application to prevent bacterial infections. Copyright © 2019 BCREC Group. All rights reserved 


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoikina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser-generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly-L-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.   


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jolanta Pulit-Prociak ◽  
Anita Staroń ◽  
Paweł Staroń ◽  
Anna Chmielowiec-Korzeniowska ◽  
Agata Drabik ◽  
...  

Abstract A series of poly(vinyl alcohol) (PVA) based liquid compositions with addition of zinc oxide, silver and copper nanoparticles has been prepared. The compositions also contained other consistency-forming organic components. The physico-chemical properties of the products have been determined. Their pH and density have been assessed. Also, the size of nanoparticles has been defined with using a dynamic light scattering technique. The compositions were subjected to XRD, FT-IR and microscopic analysis as well. Thanks to the incorporation of both metal oxide and metallic nanoparticles, it was possible to enrich the products with antibacterial properties. Their inhibiting properties in the growth of microorganisms have been confirmed against both Gram-negative and Gram-positive strains such as E. coli, S. aureus and P. aeruginosa. Thanks to the ability for solidification, the compositions may be applied on a bacterially contaminated surface, and after destroying the microorganisms and its solidification, it may be peeled off along with the dead bacterial film.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoykina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly l-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.


2018 ◽  
Vol 759 ◽  
pp. 81-85
Author(s):  
Tongsai Jamnongkan ◽  
Supranee Kaewpirom ◽  
Amnuay Wattanakornsiri ◽  
Rattanaphol Mongkholrattanasit

Recently, the composited nanofiber attraction has been growing from researchers across the world due to its exciting opportunities for use in biomedical applications. In this study, we fabricated electrospun fibers from poly (vinyl alcohol) (PVA) composited with Zinc Oxide (ZnO) nanoparticle for potential use in biomedical applications. From the experimental results, there was not any chemical bonding between the ZnO nanoparticles and the PVA molecules. The effect of concentration of ZnO nanoparticles in PVA solution on the diameter of electrospun fibers was found that the diameter of electrospun fibers increased with raising the concentration of suspended ZnO nanoparticles in solution. This is probably because the effect of nanoparticles on the diameter of electrospun fibers was through their effect on the viscosity of solution. In addition, we found that the diameter of electrospun fibers depended on the solution and processing parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qun Wang ◽  
Peng Ji ◽  
Yansheng Yao ◽  
Yi Liu ◽  
Yajie Zhang ◽  
...  

AbstractThe development of inorganic antibacterial agents that impart antibacterial properties to biomaterials has attracted wide attention. The paper introduced a kind of hybrid nanosphere antibacterial agent composed of wheat gliadin (WG) and zinc oxide (ZnO), with antibacterial efficacy and low toxicity. The ZnO/WG hybrid nanospheres were environment-friendly integrated by molecular self-assembly co-precipitating and freeze-drying transformation, and were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic absorption spectroscopy (AAS), specific surface and pore size analysis, bacteriostasis test, reactive oxygen species (ROS) determination and safety evaluation. It was found that the prepared hybrid nanospheres were composed of two components, WG and ZnO, with a diameter scope of 100–200 nm; the content of ZnO in the hybrid nanospheres can reach 46.9–70.2% (w/w); the bacteriostasis tests proved that the prepared ZnO/WG nanospheres generating ROS, have a significant inhibitory effect on E. coli and S. aureus; furthermore, the ZnO/WG nanospheres are relatively safe and highly biocompatible in cells and mice. Therefore, the prepared novel ZnO/WG hybrid nanospheres were supposed to apply in the preparation of anti-infective wound dressings, tissue engineering skin scaffold materials, food, and cosmetics preservatives, and so on.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1043 ◽  
Author(s):  
Honghai Li ◽  
Yu Chen ◽  
Weipeng Lu ◽  
Yisheng Xu ◽  
Yanchuan Guo ◽  
...  

Current wound dressings have poor antimicrobial activities and are difficult to degrade. Therefore, biodegradable and antibacterial dressings are urgently needed. In this article, we used the hydrothermal method and side-by-side electrospinning technology to prepare a gelatin mat with incorporated zinc oxide/graphene oxide (ZnO/GO) nanocomposites. The resultant fibers were characterized by field emission environment scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). Results indicated that the gelatin fibers had good morphology, and ZnO/GO nanocomposites were uniformly dispersed on the fibers. The loss of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) viability were observed to more than 90% with the incorporation of ZnO/GO. The degradation process showed that the composite fibers completely degraded within 7 days and had good controllable degradation characteristics. This study demonstrated the potential applicability of ZnO/GO-gelatin mats with excellent antibacterial properties as wound dressing material.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pimpon Uttayarat ◽  
Jarurattana Eamsiri ◽  
Theeranan Tangthong ◽  
Phiriyatorn Suwanmala

Radiolytic synthesis provides a convenient and environmentally-friendly approach to prepare metallic nanoparticles in large scale with narrow size distribution. In this report, colloidal silver nanoparticles (AgNPs) were synthesized by gamma radiation using poly(vinyl alcohol) (PVA) or silk fibroin (SF) as stabilizers and were evaluated for their antibacterial properties. The conversion of metallic silver ions to silver atoms depended on irradiation dose and stabilizer concentration as determined by UV-Vis spectrophotometry and transmission electron microscopy. The uniformly dispersed AgNPs with diameter 32.3 ± 4.40 nm were evaluated as antiseptic agents in films composed of chitosan, SF, and PVA that were processed by irradiation-induced crosslinking. Using disc diffusion assay, the films containing 432 ppm AgNPs could effectively inhibit the growth of bothStaphylococcus aureusandPseudomonas aeruginosa. Therefore, we have demonstrated in our present study that gamma radiation technique can potentially be applied in the mass production of antibacterial wound dressings.


Sign in / Sign up

Export Citation Format

Share Document