Beneficial effects of natural products on cells during ionizing radiation

2014 ◽  
Vol 29 (4) ◽  
Author(s):  
Seyed Jalal Hosseinimehr

AbstractNatural products like vegetables, fruits, and herbs are widely consumed by humans on a daily basis. These natural products have many biologic and pharmacologic properties. Ionizing radiation (IR) can interact with macromolecules like DNA, which induces serious side effects on cells and tissues. Natural products can directly scavenge free radicals produced by IR, and they can also activate or inhibit enzymes or proteins involved in the oxidative stress. Several natural products have dual biologic effects on normal and cancer cells during radiation and might be of interest for use in patients during radiotherapy. In this review, the effects of natural products on genotoxicity and cell death induced by IR were reviewed and some potentiated compounds were discussed.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 612
Author(s):  
Mee Ree Kim

Antioxidant ingredients are known to contribute to the beneficial effects of natural products in health promotion as well as disease prevention by reducing oxidative stress, caused by reactive oxygen or nitrogen species, in biological systems [...]


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 925
Author(s):  
Eva-Maria Faulhaber ◽  
Tina Jost ◽  
Julia Symank ◽  
Julian Scheper ◽  
Felix Bürkel ◽  
...  

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


Author(s):  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Mohammad S. Mubarak ◽  
Divya Jain ◽  
Rasel Khan ◽  
...  

Background: Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. Objective: To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. Method: Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. Result: Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit ‎antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. Conclusions: Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 443 ◽  
Author(s):  
Jaden Cowan ◽  
Mohammad Shadab ◽  
Dwayaja H. Nadkarni ◽  
Kailash KC ◽  
Sadanandan E. Velu ◽  
...  

Non-melanoma skin cancer is one of the major ailments in the United States. Effective drugs that can cure skin cancers are limited. Moreover, the available drugs have toxic side effects. Therefore, skin cancer drugs with less toxic side effects are urgently needed. To achieve this goal, we focused our work on identifying potent lead compounds from marine natural products. Five lead compounds identified from a class of pyrroloiminoquinone natural products were evaluated for their ability to selectively kill squamous cell carcinoma (SCC13) skin cancer cells using an MTT assay. The toxicity of these compounds was also evaluated against the normal human keratinocyte HaCaT cell line. The most potent compound identified from these studies, C278 was further evaluated for its ability to inhibit cancer cell migration and invasion using a wound-healing assay and a trans-well migration assay, respectively. To investigate the molecular mechanism of cell death, the expression of apoptotic and autophagy proteins was studied in C278 treated cells compared to untreated cells using western blot. Our results showed that all five compounds effectively killed the SCC13 cells, with compound C278 being the most effective. Compound C278 was more effective in killing the SCC13 cells compared to HaCaT cells with a two-fold selectivity. The migration and the invasion of the SCC13 cells were also inhibited upon treatment with compound C278. The expression of pro-apoptotic and autophagy proteins with concomitant downregulation in the expression of survival proteins were observed in C278 treated cells. In summary, the marine natural product analog compound C278 showed promising anticancer activity against human skin cancer cells and holds potential to be developed as an effective anticancer agent to combat skin cancer.


APOPTOSIS ◽  
2004 ◽  
Vol 9 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Julien Verrax ◽  
Julie Cadrobbi ◽  
Carole Marques ◽  
Henryk Taper ◽  
Yvette Habraken ◽  
...  

2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2096118
Author(s):  
Xudong Bai ◽  
Jin Tang

Myrcene, a natural olefinic hydrocarbon, possesses anti-inflammatory, analgesic, antibiotic, and antimutagenic properties, but its anticancer effect has not yet been elucidated. Hence, the present study was framed to investigate the molecular mechanism by which myrcene mediates the anticancer activity of A549 lung adenocarcinoma cells. In vitro, A549 lung cancer cells were cultured either with or without myrcene, and the effects on cellular metabolic activity, levels of reactive oxygen species (ROS), mitochondrial integrity, deoxyribonucleic acid (DNA) damage, and activity of caspases were analyzed. The study demonstrated that compared with control cells, myrcene induces cell death in a dose-dependent manner while inducing ROS levels. Further experiments revealed that the metabolic activity of the A549 lung adenocarcinoma cells was diminished with increased DNA damage and altered cellular integrity. In addition, increased activity of caspase-3 was also evidenced with reduced mitochondrial membrane potential synthesis in the myrcene-treated cells, which demonstrate that lung cancer cells experience signs of toxicity during myrcene treatment through the activation of the apoptosis mechanism via mitochondria-mediated cell death signaling and induction of oxidative stress. The results provide the first report on the evidence of anticancer activity and the possibility of a new drug that could be used for the treatment of lung cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Blassan P. George ◽  
Heidi Abrahamse

Bioactive compounds from plants represent good candidate drugs for the prevention and treatment of various forms of cancer. Berries are rich sources of bioactive compounds, and there has been an increasing interest in the study of therapeutic action of wild berries. Oxidants are generated continuously in biological system as a result of physiological process. When there is an imbalance between oxidants and antioxidants, it leads to a condition called oxidative stress. Natural compounds as inducers of oxidative stress are able to modulate the physiological functions of cancer cells leading to cell death or survival. The aim of this study was to evaluate the induction of apoptosis by isolated bioactive compounds (1-(2-hydroxyphenyl)-4-methylpentan-1-one (C1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (C2)) from Rubus fairholmianus against MCF-7 breast cancer cells. The exposure of C1 and C2 reduced viability (IC50 of C1: 4.69; C2: 8.36 μg/mL) and proliferation. Cytochrome c release from mitochondria and changes in mitochondrial membrane potential of treated cells supported the intrinsic apoptotic cell death. Reactive oxygen species (ROS) production after treatment with C1 and C2 was found to be higher and induced nuclear damage. Expression of apoptotic proteins after the treatments was significantly upregulated as indicated using immunofluorescence (caspase 9, p53, and Bax), western blotting (p53, cleaved PARP, cytochrome c, and Bax), and ELISA (caspase 9) analysis. Overall, C1 was more cytotoxic, increased the ROS production in dichlorodihydrofluorescein diacetate assay, and induced apoptosis in breast cancer cells. These results illustrate that berry bioactive compounds have strong chemopreventive potential. In this article, we provide information on prooxidant and anticancer activities of Rubus bioactive compounds. Natural products have always demonstrated a significant contribution to the development of several cancer chemotherapeutic drugs. Most of these compounds are known to affect the redox state of the cell; and studies on these compounds have focused on their antioxidant property instead of prooxidant properties.


2010 ◽  
Vol 5 (1) ◽  
pp. 108 ◽  
Author(s):  
Justine Rudner ◽  
Carola-Ellen Ruiner ◽  
René Handrick ◽  
Hans-Jörg Eibl ◽  
Claus Belka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document