scholarly journals Metabolism of the preimplantation embryo: 40 years on

Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 417-427 ◽  
Author(s):  
Henry J Leese

This review considers how our understanding of preimplantation embryo metabolism has progressed since the pioneering work on this topic in the late 1960s and early 1970s. Research has been stimulated by a desire to understand how metabolic events contribute to the development of the zygote into the blastocyst, the need for biomarkers of embryo health with which to improve the success of assisted conception technologies, and latterly by the ‘Developmental Origins of Health and Disease’ (DOHaD) concept. However, arguably, progress has not been as great as it might have been due to methodological difficulties in working with tiny amounts of tissue and the low priority assigned to fundamental research on fertility and infertility, with developments driven more by technical than scientific advances. Nevertheless, considerable progress has been made in defining the roles of the traditional nutrients: pyruvate, glucose, lactate, and amino acids; originally considered as energy sources and biosynthetic precursors, but now recognized as having multiple, overlapping functions. Other nutrients; notably lipids, are beginning to attract the attention they deserve. The pivotal role of mitochondria in early embryo development and the DOHaD concept, and in providing a cellular focus for metabolic events is now recognized. Some unifying ideas are discussed; namely ‘stress–response models’ and the ‘quiet embryo hypothesis’; the latter aiming to relate the metabolism of individual preimplantation embryos to their subsequent viability. The review concludes by updating the state of knowledge of preimplantation embryo metabolism in the early 1970s and listing some future research questions.

2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


2021 ◽  
pp. 507-512
Author(s):  
Eli D. Ehrenpreis ◽  
Steven D. Wexner ◽  
John C. Alverdy ◽  
David H. Kruchko

Author(s):  
Yunling Gao ◽  
Zorina S. Galis

Traditionally, much research effort has been invested into focusing on disease, understanding pathogenic mechanisms, identifying risk factors, and developing effective treatments. A few recent studies unraveling the basis for absence of disease, including cardiovascular disease, despite existing risk factors, a phenomenon commonly known as resilience, are adding new knowledge and suggesting novel therapeutic approaches. Given the central role of endothelial function in cardiovascular health, we herein provide a number of considerations that warrant future research and considering a paradigm shift toward identifying the molecular underpinnings of endothelial resilience.


2016 ◽  
Vol 28 (2) ◽  
pp. 25 ◽  
Author(s):  
Pablo Juan Ross ◽  
Sebastian Canovas

Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.


2017 ◽  
Vol 28 (6) ◽  
pp. 649-673 ◽  
Author(s):  
Ashutosh Kumar ◽  
Vikas Pareek ◽  
Muneeb A. Faiq ◽  
Pavan Kumar ◽  
Khursheed Raza ◽  
...  

AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.


2021 ◽  
Author(s):  
Iromi Wanigasuriya ◽  
Sarah A Kinkel ◽  
Tamara Beck ◽  
Ellise A Roper ◽  
Kelsey Breslin ◽  
...  

Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Groff ◽  
A Korkidakis ◽  
D Sakkas ◽  
D Page

Abstract Study question What role does the X chromosome play in early embryo metabolism? Does X chromosome copy number contribute to sex differences in early embryonic metabolism? Summary answer Chromosome X contains several metabolism-related genes that are expressed prior to X-inactivation, suggesting that their dosage plays a role in sex-biased regulation of embryo metabolism. What is known already Published reports indicate that sex differences in preimplantation embryo metabolism exist across mammalian species, including humans. Two observations supporting this are that male embryos reach blastocyst stage earlier than their female counterparts, and that glucose uptake and processing is thought to be higher in female compared to male embryos. It has been hypothesized that these differences reflect the location of the metabolism gene G6PD, the rate limiting enzyme in the Pentose Phosphate Pathway, on Chromosome X. Study design, size, duration This study is a reanalysis of publicly available RNA-seq data, including 1176 single cells from 59 blastocysts (24 E5, 18 E6, 17 E7) published in one study (Petropoulos et al 2016). Participants/materials, setting, methods Cells were subjected to a digital karyotype inference algorithm and aneuploid samples were removed from the dataset. Sex differential gene expression analyses (DE) were then performed in euploid trophectoderm cells (TE; 233 XY from 16 embryos and 180 XX cells from 12 embryos). Cell numbers from ICM were too sparse to compare. Main results and the role of chance Analysis of XX and XY TE revealed 618 significantly differentially expressed genes (DEGs; 507 upregulated in XX cells, and 111 upregulated in XY cells). These genes are spread across autosomes and sex chromosomes. Interestingly, G6PD is not significantly more highly expressed in XX cells. Gene Ontology (GO) analysis of the XX-biased DEGs revealed a transcriptional sex bias in metabolism-related GO categories, including “mitochondrial ATP synthesis coupled electron transport”, and “respiratory chain complex I”. Gene-level assessment revealed that the drivers of these enrichments are spread across the genome, but 28/64 reside on Chromosome X (hypergeometric p-value = 5.984473e–27), including NDUFA1, NDUFB11, and COX7B (components of the electron transport chain), and SLC25A5 (an ATP/ADP transporter involved in maintaining mitochondrial membrane potential). This indicates a direct role for multiple X-linked genes in sex-biased regulation of embryo metabolism. Metabolic genes that are not sex-biased are distributed across the genome, with no significant enrichment on Chromosome X (76/266, hypergeometric p-value=0.607). Together, these data indicate that GO metabolic term X enrichment is a feature of sex-biased expression and not due to an accumulation of metabolism-related genes on the X. Limitations, reasons for caution This analysis draws on publicly available data, and thus we are unable to perform orthogonal validation of karyotype calls. Additionally, while the initial dataset is large, the quality-filtered dataset (euploid XX and XY TE) is small, and single cell data is infamously variable. Further data collection is required. Wider implications of the findings: Our analysis of sex-biased gene expression in early human embryos suggests a more important role for the X chromosome in modulating sex biases in early embryo metabolism than previously recognized. This study provides insight into the mechanisms underlying the development of metabolic sex differences throughout the lifespan. Trial registration number NA


2018 ◽  
Vol 10 (3) ◽  
pp. 306-313 ◽  
Author(s):  
J. F. Felix ◽  
C. A. M. Cecil

AbstractEpigenetic changes represent a potential mechanism underlying associations of early-life exposures and later life health outcomes. Population-based cohort studies starting in early life are an attractive framework to study the role of such changes. DNA methylation is the most studied epigenetic mechanism in population research. We discuss the application of DNA methylation in early-life population studies, some recent findings, key challenges and recommendations for future research. Studies into DNA methylation within the Developmental Origins of Health and Disease framework generally either explore associations between prenatal exposures and offspring DNA methylation or associations between offspring DNA methylation in early life and later health outcomes. Only a few studies to date have integrated prospective exposure, epigenetic and phenotypic data in order to explicitly test the role of DNA methylation as a potential biological mediator of environmental effects on health outcomes. Population epigenetics is an emerging field which has challenges in terms of methodology and interpretation of the data. Key challenges include tissue specificity, cell type adjustment, issues of power and comparability of findings, genetic influences, and exploring causality and functional consequences. Ongoing studies are working on addressing these issues. Large collaborative efforts of prospective cohorts are emerging, with clear benefits in terms of optimizing power and use of resources, and in advancing methodology. In the future, multidisciplinary approaches, within and beyond longitudinal birth and preconception cohorts will advance this complex, but highly promising, the field of research.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Leigh Frame ◽  
Elise Costa ◽  
Scott Jackson

Abstract Objectives The ability to measure and describe the microbiome has led to a surge in information about the gut microbiome and its role in health and disease. The relationship between nutrition and the gut microbiome is central, as the diet is a source of microbiota, a source of fuel for the microbiota, and an indicator of the composition of the gut microbiome. We aim to assess the current understanding of the interactions between nutrition and the gut microbiome in healthy adults. A solid understanding of the interactions between nutrition and a healthy gut microbiome will form the foundation for understanding the role in disease prevention and treatment. Methods PubMed and Google Scholar searches for review articles relating to nutrition and the gut microbiome in healthy adults led to the inclusion of 38 articles in this systematic review. Results Much of the research has focused on carbohydrates in the form of dietary fiber, which are fuel for the gut microbiota. The beneficial effects of fiber have centered on Short Chain Fatty Acids (SCFAs) that are required by colonocytes (barrier function), improve absorption (minerals, water), and reduce intestinal transit time (colon cancer). Contrastingly, a low fiber, high protein diet promotes microbial protein metabolism, leading to potentially dangerous by-products that can stagnate in the gut. The bidirectional relationship between micronutrition and the gut microbiome is emerging. The microbiota utilize and produce micronutrients, leading to confounding relationships between nutritional status and biologic micronutrient concentrations, chiefly the B and K vitamins. While promising, the study of non-nutritive food components (polyphenols) and the gut microbiome is in its infancy. The role of other food components (food additives, contaminants) warrant exploration and are a significant research gap to-date. Conclusions Diet and nutrition have profound effects on the gut microbiome composition. This, in turn, affects a wide array of metabolic, hormonal, and neurological processes that influence our health and disease. Currently, there is no consensus in the scientific community on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet and the role of diet in the response of the gut microbiome to interventions. Funding Sources N/A. Supporting Tables, Images and/or Graphs


Sign in / Sign up

Export Citation Format

Share Document