scholarly journals Essential oils biological activity of the Lippia alba (Verbenaceae) shrub

2020 ◽  
Vol 68 (1) ◽  
Author(s):  
Mailen Ortega Cuadros ◽  
Emma E Acosta de Guevara ◽  
Ailen D Molina Castillo ◽  
Clara Gutiérrez Castañeda ◽  
Glorismar Castro Amarís ◽  
...  

Introduction: Lippia alba is an aromatic species belonging to the Verbenaceae family. Its essential oils have been used in different industries, because of its biological properties. Objective: Identify the perspectives of the biotechnological applications of Lippia alba essential oils. Methodology: A scoping review was conducted on the biological activity of Lippia alba essential oils registered until October, 2018 in EBSCO, Embase, Scopus, and Lilacs databases. Results: Chemotypes I and III have been reported for different biological activities from the evaluations performed on microorganisms, fish, arthropods, small mammals, and cell lines; fundamentally associated with antibacterial, antifungal, cytotoxic, antioxidant, and sedative effects, among others. Records focused mainly on the health, fishing industry, and agrifood sectors. Conclusion: Studies on the effect of essential oil are promising, but do not reflect a continuity of the research toward prototypes or finished commercial products. Research groups must unify evaluation methodologies and include in all studies the relationship between phytochemical and biological activity for the meta-analyses to be possible. Likewise, they must join efforts through the National System for Agricultural Innovation (SNIA, for the term in Spanish) to generate finished products that impact upon society and facilitate progress in the country’s bio-economy.

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Đenđi Vaštag ◽  
Suzana Apostolov ◽  
Borko Matijević ◽  
Jelena Nakomčić ◽  
Aleksandar Marinković

Phenylacetamide derivatives are a group of compounds that exhibit a wide range of biological activities as analgetic, anticonvulsant, pesticide, cytostatic. It is well known that the biological activity and the field of activity of the substance are greatly dependent on its physical, chemical and structural properties. In this paper, we applied QSRR analysis (Quantitative Structure Retention Relationships), which is based on the prediction of biological properties of compounds based on their chromatographic retention behaviors. To that end, retention constants of investigated N-substituted-2-phenylacetamide were determined by reversed phase thin-layer chromatography, (HPTLC RP18 F254s) in the presence of different volume fractions of n-propanol and tetrahydrofuran. The resulting data were correlated with molecular descriptors determined in different ways in order to establish the mathematical model that describes the relationship between retention properties and biological activities of investigated phenylacetamides.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Milka Mileva ◽  
Yana Ilieva ◽  
Gabriele Jovtchev ◽  
Svetla Gateva ◽  
Maya Margaritova Zaharieva ◽  
...  

Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


2008 ◽  
Vol 3 (10) ◽  
pp. 1934578X0800301 ◽  
Author(s):  
Maria I. Bilan ◽  
Anatolii I. Usov

Sulfated polysaccharides of brown algae (“fucoidans”) constitute a wide variety of biopolymers from simple sulfated fucans up to complex heteropolysaccharides composed of several neutral monosaccharides, uronic acid and sulfate. The increased interest in this class of polysaccharides is explained by their high and versatile biological activities, and hence, by their possible use in new drug design. Structural analysis of several fucoidans demonstrates that their biological properties are determined not only by charge density, but also by fine chemical structure, although distinct correlations between structure and biological activity cannot be formulated at present. The aim of this review is to describe the methods of structural analysis currently used in fucoidan chemistry, and to discuss some new information on the structures of fucoidans presented in recent publications.


Author(s):  
A.V. SYROESHKIN ◽  
E.V. USPENSKAYA ◽  
T.V. PLETENEVA ◽  
M.A. MOROZOVA ◽  
T.V. MAKSIMOVA ◽  
...  

Objective: Study the influence of the mechanical preparation methods (grinding, fluidization) of solid pharmaceutical substances (PS) and herbal raw material on their physicochemical properties and biological activities. Methods: Test substances and solvents-Lactose monohydrate (DFE Pharma, Germany). Sodium chloride, bendazol hydrochloride (all Sigma-Aldrich, USA) and herbal raw material (Callisia fragrans). The dispersity and native structure of pharmaceutical substances were analyzed by several methods: optical microscopy–Altami BIO 2 microscope (Russia); low angle laser light scattering (LALLS) method (Malvern Instruments, UK); Spirotox method–Quasichemical kinetic of cell transition of cellular biosensor Spirostomum ambiguum; Fourier-transform infrared spectroscopy–the analysis in the middle IR region was carried out using an IR Cary 630 Fourier spectrometer (Agilent Technologies, USA). The analysis of dried leaves of C. fragrans before and after mechanical activation was performed using Shimadzu EDX-7000 X-ray fluorescence spectrophotometer without mineralization (Shimadzu, Japan). Results: It was established that the mechanical change, such as dispersion and drying, alters the biological activity of PS and herbal raw materials. The observed increase in the influence of the dispersed substance on the biosensor S. ambiguum is quantitatively estimated from the values of the activation energy (obsEa), which turns to be valued 1,5 (P≤0,05) times more than for the native form substance. In the study of the dependence of the availability of chemical elements K, Ca, Zn on the degree of dispersion of herbal raw materials was established a quantitative 4-fold (P≤0,05) increase in the concentration of elements in mechano-activated raw materials. Conclusion: By the example of the biological model of Spirotox (single-celled biosensor S. ambiguum) and herbal raw materials obtained from C. fragrans, the increase of biological activity of PS at the dispersion of initial preparations was proved.


2007 ◽  
Vol 342-343 ◽  
pp. 721-724
Author(s):  
Byung Won Kang ◽  
T. Yoshida ◽  
Jong Baek Lee ◽  
S.J. Jeon ◽  
H.D. Choi

In order to elucidate the relationship between the structure and biological activity such as anti-HIV and blood anticoagulant activity, sulfonated polysaccharides and amino-polysaccharides having pentofuranosidic structures were synthesized. These sulfonated polysaccharides had potent anti-HIV activity in spite of low molecular weights, and which was dependent on the degree of sulfonation. For the blood anticoagulant activity, the conformation of polymer backbone and sulfamide group plays an important role on the interactions with the blood anticoagulant factor.


2020 ◽  
Vol 71 (4) ◽  
pp. 336-346
Author(s):  
Mirela Calinescu ◽  
Ovidiu Oprea ◽  
Catalina Stoica ◽  
Mihai Nita-Lazar ◽  
Madalina Mihalache

Four coordination compounds of Pd(II), Pt(II) and Pt(IV) with usnic acid (H3AU) and 1-(o-tolyl)biguanide (TB) as ligands have been synthesized in view of their potential as antimicrobial, antifungal and antitumor agents. The metal complexes have been characterized by elemental and thermogravimetrical analyses, infrared and electronic spectra. Based on these studies, the following formulas have been proposed for the complexes: [Pd(TB)(H3AU)]PdCl4 (C1), [Pd(TB)(H2AU)] CH3COO (C2), [Pt(TB)(H2AU)Cl2]Cl (C3) and [Pt(TB)(H2AU)]Cl (C4), where H2AU is deprotonated usnic acid. The in vitro biological activities of the new complexes were tested against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 10231 and HeLa tumor cells. All complexes were found to have good biological properties and therefore they can be further explored in therapeutic applications.


Food Research ◽  
2020 ◽  
Vol 4 (S5) ◽  
pp. 1-10
Author(s):  
N.A. Abdullah ◽  
W.Z.W.M. Zain ◽  
H.A. Hamid ◽  
N.W. Ramli

This review is aimed to present information on the properties of Piperaceae which can be potentially used as a biopesticide. The chemical compounds involved in were different as each species consist of different amount of secondary metabolites which then leads to different properties. In recent years, several reports have been published regarding the composition and the biological activities of the essential oils of Piper species. These studies have highlighted the existence of marked chemical differences among oils extracted from different species or varieties. Analysis of volatile constituents from Piperaceae species has revealed the presence of monoterpenes, sesquiterpenes and arylpropanoids that have shown interesting biological properties including cytotoxic, fungistatic, insecticide, molluscicidal, antioxidant and antimicrobial activities. Essential oils are natural complex secondary metabolites characterized by strong odour, volatility and have generally lower density than water. Due to their volatility, essential oils are environmentally non-persistent. On top of that, essential oils are ‘generally recognized as safe’ by the United States Food and Drug Administration (FDA). Since technology has become more advanced, people started to replace synthetic pesticide with bio-pesticide. The demand for EO has increased as it has biological properties that can be used to replace synthetic pesticide


2020 ◽  
Vol 21 (19) ◽  
pp. 7078
Author(s):  
Mariola Zielińska-Błajet ◽  
Joanna Feder-Kubis

Monoterpenes, comprising hydrocarbons, are the largest class of plant secondary metabolites and are commonly found in essential oils. Monoterpenes and their derivatives are key ingredients in the design and production of new biologically active compounds. This review focuses on selected aliphatic, monocyclic, and bicyclic monoterpenes like geraniol, thymol, myrtenal, pinene, camphor, borneol, and their modified structures. The compounds in question play a pivotal role in biological and medical applications. The review also discusses anti-inflammatory, antimicrobial, anticonvulsant, analgesic, antiviral, anticancer, antituberculosis, and antioxidant biological activities exhibited by monoterpenes and their derivatives. Particular attention is paid to the link between biological activity and the effect of structural modification of monoterpenes and monoterpenoids, as well as the introduction of various functionalized moieties into the molecules in question.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986290
Author(s):  
Amner Muñoz-Acevedo ◽  
María C. González ◽  
Juan D. Rodríguez ◽  
Yurina Sh. De Moya

Lippia alba is a plant widely studied due to both chemical diversity and bioactivities related to its ethnobotanical uses. In this work, the composition of the volatile secondary metabolites (volatile fractions/essential oil, EO) of the flower/leaves of L. alba (from northern region of Colombia) was determined by solid phase micro-extraction/distillation-solvent extraction/microwave-hydrodistillation/gas chromatography-mass spectrometry (MWHD/GC-MS), along with some in vitro biological properties (cytotoxicity and acetylcholinesterase enzyme [AChe] inhibition) from leaf EO. Outstanding results were found: (i) cis-piperitone oxide (~13%-46%), germacrene D (~11%-30%), and limonene (~10%-22%) characterized the volatile secondary metabolites from different parts of the plant; (ii) leaf EO showed a moderate hemolytic activity (HC50: 580 ± 1 µg/mL), a significant cytotoxicity on lymphocytes (LC50: 127 ± 3 µg/mL), a high cytotoxicity on HEp2 cell line (LC50: 38 ± 2 µg/mL), and a moderate inhibitory effect on AChE (IC50: 28 ± 2 µg/mL). Based on these results, a new chemovar of L. alba is reported (represented by cis-piperitone oxide) along with its promising cytotoxic and AChE inhibiting properties.


Sign in / Sign up

Export Citation Format

Share Document