Size decrease of detonation nanodiamonds by air annealing investigated by AFM

MRS Advances ◽  
2016 ◽  
Vol 1 (16) ◽  
pp. 1067-1073 ◽  
Author(s):  
Stepan Stehlik ◽  
Daria Miliaieva ◽  
Marian Varga ◽  
Alexander Kromka ◽  
Bohuslav Rezek

ABSTRACTNanodiamonds (NDs) represent a novel nanomaterial applicable from biomedicine to spintronics. Here we study ability of air annealing to further decrease the typical 5 nm NDs produced by detonation synthesis. We use atomic force microscopy (AFM) with sub-nm resolution to directly measure individual detonation nanodiamonds (DNDs) on a flat Si substrate. By means of particle analysis we obtain their accurate and statistically relevant size distributions. Using this approach, we characterize evolution of the size distribution as a function of time and annealing temperature: i) at constant time (25 min) with changing temperature (480, 490, 500°C) and ii) at constant temperature (490°C) with changing time (10, 25, 50 min). We show that the mean size of DNDs can be controllably reduced from 4.5 nm to 1.8 nm without noticeable particle loss and down to 1.3 nm with 36% yield. By air annealing the size distribution changes from Gaussian to lognormal with a steep edge around 1 nm, indicating instability of DNDs below 1 nm.

Author(s):  
Khalfan M. Al-Rashdi ◽  
Michel R. Claereboudt ◽  
Saud S. Al-Busaidi

A rapid survey of the density and size distribution of recently exploited populations of Holothuria scabra in Mahout Bay (Ghubbat Hashish Bay) was carried out at six fishing sites. The results showed that population densities varied between 1170 and 4000 individuals ha-1 and biomass ranged between 393 and 2903 kg ha-1. The mean size of sea cucumbers and population densities were much lower in populations closer to human settlements, suggestive of overfishing. The sex ratio was estimated to be 1:1 and the size distributions of males and females did not differ significantly. The length-weight relationship for both sexes was calculated as W (g) = 0.033 Length (mm) 2.178. 


2006 ◽  
Vol 527-529 ◽  
pp. 803-806 ◽  
Author(s):  
Akimasa Kinoshita ◽  
Junji Senzaki ◽  
Makoto Katou ◽  
Shinsuke Harada ◽  
Mitsuo Okamoto ◽  
...  

We perform rapid thermal annealing (RTA) on areas as large as 2-inch φ (diameter) at high temperature using the hybrid super RTA (HS-RTA) equipment. The HS-RTA equipment consists of an infrared annealing unit and a RF induction annealing unit in order to uniformly anneal over 2-inch φ susceptor. As a result of annealing by the HS-RTA equipment, the temperature is elevated from RT to peak temperature (~1800°C) for less than 1 min, remain stable at annealing temperature for 30s and falls from peak temperature to 1000°C within less than 20s. The temperature distributions on a 2-inch φ susceptor are ±10°C, ±33°C and ±55°C at 1565°C, 1671°C and 1752°C, respectively. Phosphorus (P) ion implanted silicon carbide (SiC) samples are used to evaluate the performance of the HS-RTA equipment. The five implanted samples placed on the 2-inch φ susceptor are annealed for 30s at 1565°C, 1671°C and 1752°C. The mean sheet resistances of the 5 samples annealed at 1565°C, 1671°C and 1752°C are 92.6Ω/􀀀, 82.6Ω/􀀀 and 75.5Ω/􀀀, respectively. The sheet resistance uniformities are 9.9%, 7.9% and 9.3%. The average roughness (Ra) is calculated from 10 μm square Atomic Force Microscopy (AFM) image. Ra values of the samples annealed at 1565°C, 1671°C and 1752°C are 2.399 nm, 2.408 nm and 3.282 nm, respectively.


1994 ◽  
Vol 59 (6) ◽  
pp. 1301-1304
Author(s):  
Jaroslav Nývlt ◽  
Stanislav Žáček

Lead iodide was precipitated by a procedure in which an aqueous solution of potassium iodide at a concentration of 0.03, 0.10 or 0.20 mol l-1 was stirred while an aqueous solution of lead nitrate at one-half concentration was added at a constant rate. The mean size of the PbI2 crystals was determined by evaluating the particle size distribution, which was measured sedimentometrically. The dependence of the mean crystal size on the duration of the experiment exhibited a minimum for any of the concentrations applied. The reason for this is discussed.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 236
Author(s):  
María Belén Cuadrado-Pedetti ◽  
Inés Rauschert ◽  
María Martha Sainz ◽  
Vítor Amorim-Silva ◽  
Miguel Angel Botella ◽  
...  

Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


2008 ◽  
Vol 8 (8) ◽  
pp. 4081-4085 ◽  
Author(s):  
Y. Batra ◽  
D. Kabiraj ◽  
D. Kanjilal

Germanium (Ge) nanoparticles have attracted a lot of attention due to their excellent optical properties. In this paper, we report on the formation of Ge nanoparticles embedded in GeO2 matrix prepared by electron beam evaporation and subsequent annealing. Transmission electron microscopy (TEM) studies clearly indicate the formation of Ge nanocrystals in the films annealed at 500 °C. Fourier transform infrared (FTIR) spectroscopic studies are carried out to verify the evolution of the structure after annealingat each stage. Micro-Raman analysis also confirms the formation of Ge nanoparticles in the annealed films. Development of Ge nanoparticles is also established by photoluminescence (PL) analysis. Surface morphology study is carried out by atomic force microscopy (AFM). It shows the evolution of granular structure of the films with increasing annealing temperature.


MRS Advances ◽  
2018 ◽  
Vol 4 (3-4) ◽  
pp. 139-146
Author(s):  
Takashi Tsuji ◽  
Guohai Chen ◽  
Kenji Hata ◽  
Don N. Futaba ◽  
Shunsuke Sakurai

ABSTRACTRecently, the millimetre-scale, highly efficient growth of single-wall carbon nanotube (SWCNT) forests from iron (Fe) catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the modulation of the CNT yield (height) and average number of CNT walls for a Fe/MgO catalyst system through the collective effects of initial Fe amount and MgO annealing temperature. Our results revealed the existence of a well-defined region for high yield SWCNT forest growth in the domain of deposited Fe thickness and MgO annealing temperature. Through topographic examinations of the catalyst surface using atomic force microscopy, we confirmed that our results stem from the collective effects of increased amounts of surface-bound Fe through the amount of deposition and suppression of Fe subsurface diffusion, together govern the amount of surface-bound catalyst. The combination of these mechanisms determined the final nanoparticle size, density, and stability and could explain the three distinctly defined regions: low yield SWCNT growth, high yield SWCNT growth, and high yield multiwall CNT growth. Furthermore, we explained the observed borders between these three regions.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 952 ◽  
Author(s):  
Lukasz Skowronski

In this study, the titanium layers from 12 to 1470 nm thick were fabricated by using the method involving dynamically changed working gas pressure (gas injection magnetron sputtering). The influence of the deposition time on the optical and electrical properties of Ti films, as well as on their microstructure, are considered. The samples are investigated by means of spectroscopic ellipsometry, atomic force microscopy, X-ray diffraction, and confocal optical microscopy. Additionally, for the Ti layers, the sheet resistance was determined. The produced coatings exhibit privileged direction of growth (002). The obtained results show a gradual increase in the mean relaxation time of free-carriers with the increase in the thickness of titanium film. However, the plasma energy exhibits maximum for the coating with the thickness of 93 nm. For such thickness, the lowest value of optical resistivity (about 200 μ Ω cm) was observed. It was found that the dc- and optical resistivity exhibit similar values for titanium films with thickness up to 93 nm. For thicker Ti layers, significant differences in resistivities (dc- and optical) were noticed. The behavior of the Drude parameter (the plasma energy), calculated optical resistivity, and discrepancies between values of optical and dc-resistivities for thicker Ti coatings can be explained as a result of the limited light penetration.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
I. M. Lamzin ◽  
R. M. Khayrullin

At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.


Sign in / Sign up

Export Citation Format

Share Document