Responsive materials

MRS Bulletin ◽  
2010 ◽  
Vol 35 (9) ◽  
pp. 659-664
Author(s):  
Cameron Alexander ◽  
Iqbal Gill

Responsive materials cover a breadth of types and many application fields. The common feature in all cases is a nonlinear change in properties or behavior as a result of a stimulus. The material response can range from a simple change in conformation or ionization state, through to phase transitions, bulk aggregation, or complete dissolution. As a consequence, sensing and actuation are the most investigated functions of these materials. In this issue, we have chosen to focus on responsive materials as exemplified by externally switchable, environmentally activated, and reversibly or controllably triggered systems. The chemistries of these materials, their physical properties, functional behavior, and activity are all linked, so we have aimed to cover the many disciplines underlying responsive materials through articles featuring areas that already span disparate research topics. These areas include drug delivery, smart surfaces, and nanotube transducers. The responsive materials field is growing in excitement as well as activity, and we hope that readers will gain an insight into this fascinating branch of materials science through this MRS Bulletin issue.

1997 ◽  
Vol 3 (3) ◽  
pp. 239-260 ◽  
Author(s):  
H.K. Plummer

Abstract: Since 1972 the author and colleagues at Ford Motor Company have been publishing results of materials analyses which were obtained using ambient temperature or cryomicrotomy as one of the sample preparation techniques. Generally two types of sectioning, thin and ultrathin, were pursued for light-optical and electron-optical microscopy, respectively. These papers include the study of the following materials, which have been separated into nine classes: polymer composites, polymer blends, reverse osmosis membranes, carbon fibers, elastomers, automotive exhaust catalysts, aluminum surface coatings, aluminum alloy automotive wheels, and rapidly solidified aluminum alloys. This review is not intended to reiterate the conclusions of these prior publications but will provide the reader with an insight into the many ways microtomy can be used for materials studies.


Author(s):  
John Silcox

Determination of the microstructure and microchemistry of small features often provides the insight needed for the understanding of processes in real materials. In many cases, it is not adequate to use microscopy alone. Microdiffraction and microspectroscopic information such as EELS, X-ray microprobe analysis and Auger spectroscopy can all contribute vital parts of the picture. For a number of reasons, dedicated STEM offers considerable promise as a quantitative instrument. In this paper, we review progress towards effective quantitative use of STEM with illustrations drawn from studies of high Tc superconductors, compound semiconductors and metallization of H-terminated silicon.Intrinsically, STEM is a quantitative instrument. Images are acquired directly by detectors in serial mode which is particularly convenient for digital image acquisition, control and display. The VG HB501A at Cornell has been installed in a particularly stable electromagnetic, vibration and acoustic environment. Care has been paid to achieving UHV conditions (i.e., 10-10 Torr). Finally, it has been interfaced with a VAX 3200 work station by Kirkland. This permits, for example, the acquisition of bright field (or energy loss) images and dark field images simultaneously as quantitative arrays in perfect registration.


Author(s):  
Andrew M. Yuengert

Although most economists are skeptical of or puzzled by the Catholic concept of the common good, a rejection of the economic approach as inimical to the common good would be hasty and counterproductive. Economic analysis can enrich the common good tradition in four ways. First, economics embodies a deep respect for economic agency and for the effects of policy and institutions on individual agents. Second, economics offers a rich literature on the nature of unplanned order and how it might be shaped by policy. Third, economics offers insight into the public and private provision of various kinds of goods (private, public, common pool resources). Fourth, recent work on the development and logic of institutions and norms emphasizes sustainability rooted in the good of the individual.


Sexualities ◽  
2020 ◽  
pp. 136346072098169
Author(s):  
Aidan McKearney

This article focuses on the experiences of gay men in the rural west and northwest region of Ireland, during a period of transformational social and political change in Irish society. These changes have helped facilitate new forms of LGBTQI visibility, and local radicalism in the region. Same-sex weddings, establishment of rural LGBT groups and marching under an LGBT banner at St Patricks Day parades would have been unthinkable in the recent past; but they are now becoming a reality. The men report continuing challenges in their lives as gay men in the nonmetropolitan space, but the emergence of new visibility, voice and cultural acceptance of LGBT people is helping change their lived experiences. The study demonstrates the impact of local activist LGBT citizens. Through their testimonies we can gain an insight into the many, varied and interwoven factors that have interplayed to create the conditions necessary for the men to: increasingly define themselves as gay to greater numbers of people in their localities; to embrace greater visibility and eschew strategies of silence; and aspire to a host of legal, political, cultural and social rights including same-sex marriage. Organic forms of visibility and local radicalism have emerged in the region and through an analysis of their testimonies we can see how the men continue to be transformed by an ever-changing landscape.


Author(s):  
Tiancheng Zhou ◽  
Caihua Xiong ◽  
Juanjuan Zhang ◽  
Di Hu ◽  
Wenbin Chen ◽  
...  

Abstract Background Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce the metabolic rate of walking or running. However, the combined requirements of overcoming the fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of the exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy during both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. Methods We analyzed the metabolic rates, muscle activities and spatiotemporal parameters of 9 healthy subjects (mean ± s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at a speed of 1.5 m s−1 and running at a speed of 2.5 m s−1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the assistance from a spring with optimal stiffness at different speeds to demonstrate the generality of the proposed approach. Results We found that the common optimal exoskeleton spring stiffness for walking and running was 83 Nm Rad−1, corresponding to 7.2% ± 1.2% (mean ± s.e.m, paired t-test p < 0.01) and 6.8% ± 1.0% (p < 0.01) metabolic reductions compared to walking and running without exoskeleton. The metabolic energy within the tested speed range can be reduced with the assistance except for low-speed walking (1.0 m s−1). Participants showed different changes in muscle activities with the assistance of the proposed exoskeleton. Conclusions This paper first demonstrates that the metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate the metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provide new insight into human response to the same assistive principle for different gaits (walking and running).


2001 ◽  
Vol 11 (4) ◽  
pp. 311-321
Author(s):  
DN Carmichael ◽  
Michael Lye

Heart failure has been defined in many ways and definitions change over time. The multiplicity of definitions reflect the paucity of our understanding of the primary underlying physiology of heart failure and the many diseases for which heart failure is the common end-point. Fundamentally, heart failure represents a failure of the heart to meet the body’s requirement for blood supply for whatever reason. It is thus a clinical syndrome with characteristic features – not a single disease in its own right. The syndrome includes symptoms and signs of organ underperfusion, fluid retention and neuroendocrine activation. The syndrome arises from a range of possible causes of which ischaemic heart disease is the commonest. From the point of view of a clinician, the underlying pathology will determine treatment options and prognosis. The extensive range of possible aetiologies present a diagnostic challenge both to correctly identify the syndrome amongst all other causes of dyspnoea and to identify the aetiology, allowing optimization of treatment.


2012 ◽  
Vol 610-613 ◽  
pp. 3574-3579
Author(s):  
Cui Hua Wang ◽  
Sheng Long Yang ◽  
Chao Lu ◽  
Hong Xia Yu ◽  
Lian Shen Wang ◽  
...  

By using CoMFA and CoMSIA methods, the new quantitative structures of 25 aromatic hydrocarbons and the 96 hr-EC50 data with C. vulgaris have been investigated to obtain more detailed insight into the relationships between molecular structure and bioactivity. Compared to CoMFA (the average Q2LOO option =0.610), CoMSIA (the average Q2LOO =0.736) has the better results with robustness and stability. CoMSIA analysis using steric, electrostatic, hydrophobic, and H-bond donor and acceptor descriptors show H-bond donor is the common factor for influencing the toxicity, the steric and electrostatic descriptors are next and the hydrophobic descriptor was last. From the contour maps, the number of benzene ring is more crucial for the compound toxicity and the compounds with more benzene ring make toxicity increased. Under the same number of benzene ring, the kind of substituent group and the formed ability of H-bond are the other parameters to influencing the aromatic hydrocarbons toxicity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haomiao Cheng ◽  
Zhanru Shao ◽  
Chang Lu ◽  
Delin Duan

Abstract Background The nitrogen-containing polysaccharide chitin is the second most abundant biopolymer on earth and is found in the cell walls of diatoms, where it serves as a scaffold for biosilica deposition. Diatom chitin is an important source of carbon and nitrogen in the marine environment, but surprisingly little is known about basic chitinase metabolism in diatoms. Results Here, we identify and fully characterize 24 chitinase genes from the model centric diatom Thalassiosira pseudonana. We demonstrate that their expression is broadly upregulated under abiotic stresses, despite the fact that chitinase activity itself remains unchanged, and we discuss several explanations for this result. We also examine the potential transcriptional complexity of the intron-rich T. pseudonana chitinase genes and provide evidence for two separate tandem duplication events during their evolution. Conclusions Given the many applications of chitin and chitin derivatives in suture production, wound healing, drug delivery, and other processes, new insight into diatom chitin metabolism has both theoretical and practical value.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2557 ◽  
Author(s):  
Seo Lee ◽  
Jae Kang ◽  
Dokyoung Kim

Porous silicon has been utilized within a wide spectrum of industries, as well as being used in basic research for engineering and biomedical fields. Recently, surface modification methods have been constantly coming under the spotlight, mostly in regard to maximizing its purpose of use. Within this review, we will introduce porous silicon, the experimentation preparatory methods, the properties of the surface of porous silicon, and both more conventional as well as newly developed surface modification methods that have assisted in attempting to overcome the many drawbacks we see in the existing methods. The main aim of this review is to highlight and give useful insight into improving the properties of porous silicon, and create a focused description of the surface modification methods.


Author(s):  
William Loader

After a brief overview of the social context and role of marriage and sexuality in Jewish and Greco-Roman cultures, the chapter traces the impact of the Genesis creation narratives, positively and negatively, on how marriage and sexuality were seen both in the present and in depictions of hope for the future. Discussion of pre-marital sex, incest, intermarriage, polygyny, divorce, adultery, and passions follows. It then turns to Jesus’ reported response to divorce, arguing that the prohibition sayings should be read as assuming that sexual intercourse both effects permanent union and severs previous unions, thus making divorce after adultery mandatory, the common understanding and legal requirement in both Jewish and Greco-Roman society of the time. It concludes by noting both the positive appreciation of sex and marriage, grounded in belief that they are God’s creation, and the many dire warnings against sexual wrongdoing, including adulterous attitudes and uncontrolled passions.


Sign in / Sign up

Export Citation Format

Share Document