Integrated Optoelectronic Devices on Silicon

2012 ◽  
Vol 1396 ◽  
Author(s):  
Di Liang ◽  
John E. Bowers

ABSTRACTSilicon (Si) has been the dominating material platform of microelectronics over half century. Continuous technological advances in circuit design and manufacturing enable complementary metal-oxide semiconductor (CMOS) chips with increasingly high integration complexity to be fabricated in an unprecedently scale and economical manner. Conventional Si-based planar lightwave circuits (PLCs) has benefited from advanced CMOS technology but only demonstrate passive functionalities in most circumstances due to poor light emission efficiency and weak major electro-optic effects (e.g., Pockels effect, the Kerr effect and the Franz–Keldysh effect) in Si. Recently, a new hybrid III-V-on-Si integration platform has been developed, aiming to bridge the gap between Si and III-V direct-bandgap materials for active Si photonic integrated circuit applications. Since then high-performance lasers, amplifiers, photodetectors and modulators, etc. have been demonstrated. Here we review the most recent progress on hybrid Si lasers and high-speed hybrid Si modulators. The former include distributed feedback (DFB) lasers showing over 10 mW output power and up to 85 oC continuous-wave (cw) operation, compact hybrid microring lasers with cw threshold less than 4 mA and over 3 mW output power, and 4-channel hybrid Si AWG lasers with channel space of 360 GHz. Recently fabricated traveling-wave electro-absorption modulators (EAMs) and Mach-Zehnder interferometer modulators (MZM) on this platform support 50 Gb/s and 40 Gb/s data transmission with over 10 dB extinction ratio, respectively.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 477 ◽  
Author(s):  
Mohammad Arif Sobhan Bhuiyan ◽  
Md Torikul Islam Badal ◽  
Mamun Bin Ibne Reaz ◽  
Maria Liz Crespo ◽  
Andres Cicuttin

Power amplifiers (PAs) are among the most crucial functional blocks in the radio frequency (RF) frontend for reliable wireless communication. PAs amplify and boost the input signal to the required output power. The signal is amplified to make it sufficiently high for the transmitter to propagate the required distance to the receiver. Attempted advancements of PA have focused on attaining high-performance RF signals for transmitters. Such PAs are expected to require low power consumption while producing a relatively high output power with a high efficiency. However, current PA designs in nanometer and micrometer complementary metal–oxide semiconductor (CMOS) technology present inevitable drawbacks, such as oxide breakdown and hot electron effect. A well-defined architecture, including a linear and simple functional block synthesis, is critical in designing CMOS PA for various applications. This article describes the different state-of-the art design architectures of CMOS PA, including their circuit operations, and analyzes the performance of PAs for 2.4 GHz ISM (industrial, scientific, and medical) band applications.



Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1835 ◽  
Author(s):  
Taegun Yim ◽  
Choongkeun Lee ◽  
Hongil Yoon

Due to the advance of dynamic random access memory (DRAM) technologies with the steadfast increase of density with aggressively scaled storage capacitors, the supply voltage has been lowered to under 1 V to reduce power consumption. The above progress has been accompanied by the increasingly difficult task of sensing cell data reliably. One of the essential methods to preserve sustainable data retention characteristic is to curtail the sub-threshold leakage current by using a negative voltage bias for the bulk of access transistors. This negative back-bias is generated by a back-bias voltage generator. This paper proposes a novel high-speed back-bias voltage (VBB) generator with a cross-coupled hybrid pumping scheme. The conventional circuit uses one fixed voltage to control the gates of discharge of the p-channel metal oxide semiconductor (PMOS) and transfer n-channel metal oxide semiconductor (NMOS), respectively. However, the proposed circuit adds an auxiliary pump, thereby able to control more aptly with a lower negative voltage when discharging and a higher positive voltage when transferring. As a result, the proposed circuit achieves a faster pump-down speed and higher pumping current at a lower supply voltage compared to conventional circuits. The H-simulation program with integrated circuit emphasis (HSPICE) simulation results with the Taiwan semiconductor manufacturing company (TSMC) 0.18 um process technology indicates that the proposed circuit has about a 20% faster pump-down speed at a supply voltage of voltage common collector (VCC) = 1.2 V and about 3% higher pumping current at VBB from −0.6 V to −1 V with the ability to generate a near 3% higher ratio of |VBB|/VCC at VCC = 0.6 V compared to conventional circuits. Hence, the proposed circuit is extremely suitable and promising for future low-power and high-performance DRAM applications.



2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.



Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.



Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.



2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Taikyu Kim ◽  
Cheol Hee Choi ◽  
Pilgyu Byeon ◽  
Miso Lee ◽  
Aeran Song ◽  
...  

AbstractAchieving high-performance p-type semiconductors has been considered one of the most challenging tasks for three-dimensional vertically integrated nanoelectronics. Although many candidates have been presented to date, the facile and scalable realization of high-mobility p-channel field-effect transistors (FETs) is still elusive. Here, we report a high-performance p-channel tellurium (Te) FET fabricated through physical vapor deposition at room temperature. A growth route involving Te deposition by sputtering, oxidation and subsequent reduction to an elemental Te film through alumina encapsulation allows the resulting p-channel FET to exhibit a high field-effect mobility of 30.9 cm2 V−1 s−1 and an ION/OFF ratio of 5.8 × 105 with 4-inch wafer-scale integrity on a SiO2/Si substrate. Complementary metal-oxide semiconductor (CMOS) inverters using In-Ga-Zn-O and 4-nm-thick Te channels show a remarkably high gain of ~75.2 and great noise margins at small supply voltage of 3 V. We believe that this low-cost and high-performance Te layer can pave the way for future CMOS technology enabling monolithic three-dimensional integration.



Author(s):  
Tejaswini M. L ◽  
Aishwarya H ◽  
Akhila M ◽  
B. G. Manasa

The main aim of our work is to achieve low power, high speed design goals. The proposed hybrid adder is designed to meet the requirements of high output swing and minimum power. Performance of hybrid FA in terms of delay, power, and driving capability is largely dependent on the performance of XOR-XNOR circuit. In hybrid FAs maximum power is consumed by XOR-XNOR circuit. In this paper 10T XOR-XNOR is proposed, which provide good driving capabilities and full swing output simultaneously without using any external inverter. The performance of the proposed circuit is measured by simulating it in cadence virtuoso environment using 90-nm CMOS technology. This circuit outperforms its counterparts showing power delay product is reduced than that of available XOR-XNOR modules. Four different full adder designs are proposed utilizing 10T XOR-XNOR, sum and carry modules. The proposed FAs provide improvement in terms of PDP than that of other architectures. To evaluate the performance of proposed full adder circuit, we embedded it in a 4-bit and 8-bit cascaded full adder. Among all FAs two of the proposed FAs provide the best performance for a higher number of bits.



Author(s):  
Widianto Widianto ◽  
Lailis Syafaah ◽  
Nurhadi Nurhadi

In this paper, effects of process variations in a HCMOS (High-Speed Complementary Metal Oxide Semiconductor) IC (Integrated Circuit) are examined using a Monte Carlo SPICE (Simulation Program with Integrated Circuit Emphasis) simulation. The variations of the IC are L and VTO variations. An evaluation method is used to evaluate the effects of the variations by modeling it using a normal (Gaussian) distribution. The simulation results show that the IC may be detected as a defective IC caused by the variations based on large supply currents flow to it. 



MRS Bulletin ◽  
1996 ◽  
Vol 21 (4) ◽  
pp. 38-44 ◽  
Author(s):  
F.K. LeGoues

Recently much interest has been devoted to Si-based heteroepitaxy, and in particular, to the SiGe/Si system. This is mostly for economical reasons: Si-based technology is much more advanced, is widely available, and is cheaper than GaAs-based technology. SiGe opens the door to the exciting (and lucrative) area of Si-based high-performance devices, although optical applications are still limited to GaAs-based technology. Strained SiGe layers form the base of heterojunction bipolar transistors (HBTs), which are currently used in commercial high-speed analogue applications. They promise to be low-cost compared to their GaAs counterparts and give comparable performance in the 2-20-GHz regime. More recently we have started to investigate the use of relaxed SiGe layers, which opens the door to a wider range of application and to the use of SiGe in complementary metal oxide semiconductor (CMOS) devices, which comprise strained Si and SiGe layers. Some recent successes include record-breaking low-temperature electron mobility in modulation-doped layers where the mobility was found to be up to 50 times better than standard Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Even more recently, SiGe-basedp-type MOSFETS were built with oscillation frequency of up to 50 GHz, which is a new record, in anyp-type material for the same design rule.



2019 ◽  
Vol 2019 (1) ◽  
pp. 000438-000443 ◽  
Author(s):  
Joseph Meyer ◽  
Reza Moghimi ◽  
Noah Sturcken

Abstract The generational scaling of CMOS device geometries, as predicted by Moore's law, has significantly outpaced advances in CMOS package and power electronics technology. The conduction of power to a high-performance integrated circuit (IC) die typically requires close to 50% of package and IC I/O and is increasing with trends towards lower supply voltages and higher power density that occur in advanced CMOS nodes. The disparity in scaling of logic, package, and I/O technology has created a significant bottleneck that has become a dominant constraint on computational performance. By performing power conversion and voltage regulation in-package, this limitation can be mitigated. Integration of thin-film ferromagnetic inductors with CMOS technology enables single-chip power converters to be co-packaged with processors, high bandwidth memory (HBM), and/or other modules. This paper highlights the advantages of fully integrated package voltage regulators (PVRs), which include: reducing package I/O allocated for power, eliminating the need for upstream power-conversion stages, and improving transient response. These benefits substantially reduce the size, weight, and power of modern electronic systems.



Sign in / Sign up

Export Citation Format

Share Document