Enhanced Thermoelectric Figure-of-merit at Room Temperature in Bulk Bi(Sb)Te(Se) With Grain Size of ∼100nm

2013 ◽  
Vol 1543 ◽  
pp. 93-98 ◽  
Author(s):  
Tsung-ta E. Chan ◽  
Rama Venkatasubramanian ◽  
James M. LeBeau ◽  
Peter Thomas ◽  
Judy Stuart ◽  
...  

ABSTRACTGrain boundaries are known to be able to impede phonon transport in the material. In the thermoelectric application, this phenomenon could help improve the figure-of-merit (ZT) and enhance the thermal to electrical conversion. Bi2Te3 based alloys are renowned for their high ZT around room temperature but still need improvements, in both n- and p-type materials, for the resulting power generation devices to be more competitive. To implement high density of grain boundaries into the bulk materials, a bottom-up approach is employed in this work: consolidations of nanocrystalline powders into bulk disks. Nanocrystalline powders are developed by high energy cryogenic mechanical alloying that produces Bi(Sb)Te(Se) alloy powders with grain size in the range of 7 to 14 nm, which is about 25% finer compared to room temperature mechanical alloying. High density of grain boundaries are preserved from the powders to the bulk materials through optimized high pressure hot pressing. The consolidated bulk materials have been characterized by X-ray diffraction and transmission electron microscope for their composition and microstructure. They mainly consist of grains in the scale of 100 nm with some distributions of finer grains in both types of materials. Preliminary transport property measurements show that the thermal conductivity is significantly reduced at and around room temperature: about 0.65 W/m-K for the n-type BiTe(Se) and 0.85 W/m-K for the p-type Bi(Sb)Te, which are attributed to increased phonon scattering provided by the nanostructure and therefore enhanced ZT about 1.35 for the n-type and 1.21 for the p-type are observed. Detailed transport properties, such as the electrical resistivity, Seebeck coefficient and power factor as well as the resulting ZT as a function of temperature will be described.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3448
Author(s):  
Francisco Arturo López Cota ◽  
José Alonso Díaz-Guillén ◽  
Oscar Juan Dura ◽  
Marco Antonio López de la Torre ◽  
Joelis Rodríguez-Hernández ◽  
...  

This contribution deals with the mechanochemical synthesis, characterization, and thermoelectric properties of tetrahedrite-based materials, Cu12-xMxSb4S13 (M = Fe2+, Zn2+, Cd2+; x = 0, 1.5, 2). High-energy mechanical milling allows obtaining pristine and substituted tetrahedrites, after short milling under ambient conditions, of stoichiometric mixtures of the corresponding commercially available binary sulfides, i.e., Cu2S, CuS, Sb2S3, and MS (M = Fe2+, Zn2+, Cd2+). All the target materials but those containing Cd were obtained as single-phase products; some admixture of a hydrated cadmium sulfate was also identified by XRD as a by-product when synthesizing Cu10Cd2Sb4S13. The as-obtained products were thermally stable when firing in argon up to a temperature of 350–400 °C. Overall, the substitution of Cu(II) by Fe(II), Zn(II), or Cd(II) reduces tetrahedrites’ thermal and electrical conductivities but increases the Seebeck coefficient. Unfortunately, the values of the thermoelectric figure of merit obtained in this study are in general lower than those found in the literature for similar samples obtained by other powder processing methods; slight compositional changes, undetected secondary phases, and/or deficient sintering might account for some of these discrepancies.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2002 ◽  
Vol 727 ◽  
Author(s):  
Y. Champion ◽  
P. Langlois ◽  
S. Guérin-Mailly ◽  
C. Langlois ◽  
M. J. Hÿtch

AbstractUnderstanding the mechanical behaviour of metallic nanostructures is a key issue for their development. On the one hand, knowledge of the plastic behaviour at various temperatures is essential to control the synthesis, forming, and machining of such materials. Equally, a clear understanding of atomic and mesoscopic mechanisms, involving defects and their interactions, is essential for the control of ageing and functional properties. Regarding plastic deformation at room temperature, there is now evidence for unusual behaviour in nanostructured metals. In addition to high resistance and ductility, tensile testing reveals peculiar elasto-plastic deformation. Such behaviour was initially attributed to grain-boundary sliding. However, intergranular areas (including triple junctions) may possess special properties compared to their microcrystalline counterparts. For example, low activation energies have been measured for grain-boundary diffusion and it has been observed that grain-boundaries may act as dislocation sources and nucleation sites for deformation twinning.In this paper, we report on analysis on bulk copper nanostructures. Grain-boundaries are studied, by cross-correlating information from mechanical tensile testing and structural analysis, including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Macroscopic bulk specimens (with grain size of about 80 nm) are prepared by powder metallurgy techniques, modified to fit to the special properties of nanocrystalline powders. Processing includes coldisostatic pressing, sintering and differential extrusion. The powders used (grain size of 40 nm) are synthesised by evaporation and cryo-condensation of a metallic vapour within liquid nitrogen. Results on mechanical testing and structural analysis will be reported. Emphasis will be placed on the structure of grain-boundaries (type of grain-boundary, grain-boundary thickness) studied by TEM and high resolution TEM image analysed using the geometric phase technique. The nanostructure was revealed to be consist in agglomerate of nano-size grains separated by low angle grain-boundaries. Agglomerates are themselves separerated by general high angle boundaries. These observations will then be related to the unusual mechanical true stress-true strain curves of the metallic nanostructures.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Juan Zhou ◽  
Qing Jie ◽  
Qiang Li

AbstractWe have prepared a variety of filled skutterudites through non-equilibrium synthesis by converting melt-spun ribbons into single phase polycrystalline bulk under pressure. In general, better thermoelectric properties are found in these samples. In this work, we performed microstructure characterization of non-equilibrium synthesized p-type filled skutterudite CeFe4Sb12 by X-ray diffraction, scanning electron microscopy and transmission electron microscopy in order to understand the structural origin of the improved thermoelectric properties. It is found that the non-equilibrium synthesized samples have smaller grain size and cleaner grain boundaries when compared to the samples prepared by the conventional solid-state reaction plus long term annealing. While smaller grain size can help reduce the lattice thermal conductivity, cleaner grain boundaries ensure higher carrier mobility and subsequently, higher electrical conductivity at the application temperatures.


2018 ◽  
Vol 773 ◽  
pp. 145-151
Author(s):  
Min Soo Park ◽  
Gook Hyun Ha ◽  
Hye Young Koo ◽  
Yong Ho Park

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.


2018 ◽  
Vol 941 ◽  
pp. 257-262
Author(s):  
Massimo de Sanctis ◽  
Alessandra Fava ◽  
Gianfranco Lovicu ◽  
Roberto Montanari ◽  
Maria Richetta ◽  
...  

An oxide dispersion strengthened (ODS) ferritic steel with nanometric grain size has been produced by means of low-energy mechanical alloying (LEMA) of steel powder (Fe-14Cr-1W-0.4Ti) mixed with Y2O3 particles (0.3 wt%) and successive hot extrusion (HE). The material has equiaxed grains (mean size of 400 nm) and dislocation density of 4 x 1012 m-2, and exhibits superior mechanical properties with respect the unreinforced steel. The mechanical behavior has been compared with that of ODS steels prepared by means of the most common process, high-energy mechanical alloying (HEMA), consolidation through hot isostatic pressing (HIP) or hot extrusion (HE), annealing around 1100 °C for 1-2 hours, which produces a bimodal grain size distribution. The strengthening mechanisms have been examined and discussed to explain the different behavior.


2011 ◽  
Vol 672 ◽  
pp. 171-174
Author(s):  
Ionel Chicinaş ◽  
P. Cârlan ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Lidia Adriana Sorcoi

The Ir-Al powder in the 1:1 atomic ratio was obtained by high energy mechanical alloying in a Pulverisette 4 Fritch planetary mill. The final product was obtained after 28 h of milling in argon atmosphere. Alloy formation was investigated by X-ray diffraction. After 4 h of milling the new structure of IrAl compound is found in the diffraction patterns. The obtained powders are nanocrystalline with a mean crystallite size of 11 nm after 28 h of milling. The particle morphology and the chemical homogeneity were studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDX). It was found that the obtained compound present large particles composed by smaller one.


2012 ◽  
Vol 1456 ◽  
Author(s):  
Tsung-ta E. Chan ◽  
Rama Venkatasubramanian ◽  
James M. LeBeau ◽  
Peter Thomas ◽  
Judy Stuart ◽  
...  

ABSTRACTNanocomposite Bi2Te3 based alloys are attractive for their potentially high thermoelectric figure-of-merit (ZT) around room temperature. The nano-scale structural features embedded in the matrix provide more scattering of phonons and can thus reduce the lattice thermal conductivity. To further take advantage of such nanocomposite structures, we focus on the development of nanocrystalline Bi(Sb)Te(Se) powders by high energy cryogenic mechanical alloying followed by an optimized hot pressing process. This approach is shown to successfully produce Bi(Sb)Te(Se) alloy powders with grain size averaging about 9 nm for n-type BiTe(Se) and about 16 nm for p-type Bi(Sb)Te respectively. This cryogenic process offers much less milling time and prevents thermally activated contamination or imperfections from being introduced during the milling process. The nanocrystalline powders are then compacted at optimized pressures and temperatures to achieve full density compactions and preserve the grain sizes effectively. The resulting nano-bulk materials have optimal Seebeck coefficients and are expected to have improved ZT. Thermoelectric properties and microstructure studies by X-ray diffraction and transmission electron microscopy will also be presented and discussed.


1999 ◽  
Vol 581 ◽  
Author(s):  
R.E. Park ◽  
Y.H. Park ◽  
T. Abe

ABSTRACTThe Bi2Te3-Sb2Te3 compounds with the composition of useful thermoelectric cooling materials were prepared by mechanical alloying-pulse discharge sintering process. Effects of the process on the Seebeck coefficient, electrical resistivity and thermal conductivity were investigated. Temperature dependence of the Hall coefficient was also observed in the temperature range 80 - 325 K.The figure of merit, Z, was found to be about 4.0 × 10−1K−1 at room temperature in the 25%Bi2Te3-75%Sb2Te3 composition sintered at 618K using grain refined mechanically alloyed powders which had the size of under 32 μm. The value of Z was remarkably improved with a decrease of the thermal conductivity shown in the fine grain compacts fabricated by mechanical alloying-pulse discharge sintering process.


Sign in / Sign up

Export Citation Format

Share Document