Laser-induced Dewetting Nanomorphologies in Single and Bilayer Metal Films

2006 ◽  
Vol 960 ◽  
Author(s):  
Hare Krishna ◽  
Christopher Favazza ◽  
R. Sureshkumar ◽  
R. Kalyanaraman

ABSTRACTSpatially ordered patterns result under ns laser-induced dewetting of nanoscopic metallic films like Co and Ag on inert substrates like SiO2. In both cases, the observed ordering length scale is due to thin film hydrodynamic instability with spinodal-like character. However, the morphological pathway during dewetting is different for the two metals: occurring through development of bicontinuous structures in the case of Ag and by progression of cellular networks for Co. Dewetting in bilayer structures of Ag and Co on SiO2 show that the morphology evolution is dictated by the thicker of the two films in the bilayer structure. We applied linear stability analysis to predict the length scales in single and bilayer metal film. The experimental observations are in good agreement with theoretical predictions from the analysis. An important result was that the length scales for the bilayer film were significantly smaller than a single layer of the same thickness suggesting that further control of patterning length scales may be achieved through multilayer dewetting.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
George A. Adamidis ◽  
Ioannis O. Vardiambasis ◽  
Melina P. Ioannidou ◽  
Theodoros N. Kapetanakis

Single-layer 4 × 4 and 8 × 8 Butler matrices (BMs) that operate in the L and S bands are implemented in this paper. Easy-to-fabricate microstrip layout topologies are designed and constructed; the final arrangement of the BMs allows realization without any crossovers. The performance of the networks is evaluated by measuring their frequency response. The return loss (RL) and the isolation are below -15 dB over the operation bandwidth for all structures, whereas the average insertion loss is less than 1 dB for the 4 × 4 BM and does not exceed 3 dB for the 8 × 8 BM. The amplitude imbalance is at most 0.5 dB and 1.5 dB, for the 4 × 4 and the 8 × 8 BMs, respectively. Moreover, multibeam antenna arrays fed by the BMs are constructed. The radiation patterns are measured and compared with theoretical data; a good agreement is achieved. The side lobes are sufficiently low, compared to the theoretical predictions, whereas they are further reduced by applying appropriate excitation schemes to the input ports of the BMs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


1972 ◽  
Vol 50 (18) ◽  
pp. 2122-2137
Author(s):  
R. Turner ◽  
J. F. Cochran

According to Van Gelder the microwave absorption by a thin metal film in the presence of a static magnetic field normal to the film contains a series of peaks as the magnetic field is varied. In the present paper it is argued that these peaks correspond to Doppler-shifted cyclotron resonances of the carriers in the metal due to the quantization of electron momenta normal to the plane of the film. A simple quantum calculation is presented for the case of free electrons where the film is thin enough that to first order the microwave fields within are determined only by the boundary conditions and Maxwell's equations. The quantum expression is in good agreement with the absorption calculated using semiclassical arguments which can be readily extended to more complicated Fermi surfaces.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


1984 ◽  
Vol 28 (01) ◽  
pp. 70-75
Author(s):  
C. C. Hsu

Simple wall correction rules for two-dimensional and nearly two-dimensional cavity flows in closed or free jet water tunnels, based on existing linearized analyses, are made. Numerical results calculated from these expressions are compared with existing experimental findings. The present theoretical predictions are, in general, in good agreement with data.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Ariadne-Αnne Tsambali ◽  
Avraam A. Konstantinidis ◽  
Elias C. Aifantis

AbstractThe double diffusivity model proposed earlier by Aifantis and co-workers was applied in this work for modelling the diffusion of metals in sandy aquifers, as well as chloride diffusion in concrete specimens. The theoretical predictions are in very good agreement with the measured concentrations in all cases, showing that the model is capable of dealing with a large variety of double diffusivity problems.


Sign in / Sign up

Export Citation Format

Share Document