scholarly journals Modified taro starch as alternative encapsulant for microencapsulation of Lactobacillus plantarum SU-LS 36

2020 ◽  
Vol 38 (No. 5) ◽  
pp. 293-300
Author(s):  
R. Haryo Bimo Setiarto ◽  
Harsi Dewantari Kusumaningrum ◽  
Betty Sri Laksmi Jenie ◽  
Tatik Khusniati ◽  
Sulistiani Sulistiani

Taro starch was modified and used as an alternative encapsulant for the microencapsulation of Lactobacillus plantarum SU-LS 36 by spray drying. Modification of taro starch was conducted by heat moisture treatment (HMT) and 2 autoclaving-cooling cycles (AC-2C). Microencapsulation of L. plantarum SU-LS 36 by spray dryer was done at constant air inlet (125 °C) and outlet temperature (50 °C), feed flow rate (4 mL min<sup>–1</sup>), drying air flow rate (20 m3 h<sup>–1</sup>) and air pressure (0.196 MPa). The modified taro starch AC-2C as an encapsulant material was able to produce round-shaped microcapsules and provided optimal protection during spray drying. The modified taro starch AC-2C is very promising to be used as an encapsulant for L. plantarum SU-LS36 since it showed better production yield (40.19%), high encapsulation efficiency (89.83%), protected the encapsulated bacteria from high temperature (70 °C), and showed the lowest viability decreasing during storage up to 6 weeks at room temperature.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Hasan Alimoradi ◽  
Madjid Soltani ◽  
Pooriya Shahali ◽  
Farshad Moradi Kashkooli ◽  
Razieh Larizadeh ◽  
...  

In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate, air flow rate, inlet water temperature, and packing compaction on the performance are examined. A new empirical model for the cooling tower performance and efficiency is also developed. Finally, the optimized performance conditions of the cooling tower are obtained by the presented correlations. The results reveal that cooling tower efficiency is increased by increasing the air flow rate, water flow rate, and packing compaction.


2020 ◽  
Vol 859 ◽  
pp. 301-306
Author(s):  
Nattakanwadee Khumpirapang ◽  
Supreeya Srituptim ◽  
Worawut Kriangkrai

Garlic exerts its pharmacological activities; antihyperglycemic, antihyperlipidemia, antihypercholesterolemic, and antihypertensive activity. Therefore, the aim of this study was to determine and optimize the influence of the individual and interactive effect of process conditions variables on the yield of garlic extract powders by three factors and three level-Box-Behnken design under response surface methodology. Spray drying processes the transformation of a garlic juice extract into a dried powder, where usually maltodextrin (MD) as a drying agent is used. According to experimental design, the mixing of garlic juice extract (85 – 95 %w/w) and MD (5 – 15 %w/w) were dried at an air inlet temperature 110°C - 150°C and liquid feed flow rate 5 – 35 rpm. The optimum spray-drying process conditions which maximized the yield of garlic extract powder (31%w/w) were found as follows: air inlet temperature of 150°C, the liquid feed flow rate of 16 rpm, and 5 %w/w MD. The experimental values slightly closed to the corresponding predicted values. Hence, the developed model was adequate and possible to use.


Author(s):  
Deeksha Vishwakarma ◽  
Jyoti Kale

In this paper, we are studying about solar air heater. The solar air heater are consisting the several component such as flat glass, collector, D.C. fan, photovoltaic cells and electrical storage system. In this study we are achieving the various type of outlet temperature with the help of D.C. fan and various Mass air flow rate using of simple absorber trays forced convection.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiseon Park ◽  
Soon Bae Kwon ◽  
Hye Jeong Kwon

Abstract Objectives The purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. Methods First, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. Results The yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. Conclusions In this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics. We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding Sources This study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs


2020 ◽  
Vol 12 (9) ◽  
pp. 3619
Author(s):  
Afaq Jasim Mahmood

In this study, an experimental outdoor investigation of the thermal efficiency and outlet air temperature was conducted on an unglazed, double-pass, solar air heater with a perforated absorber plate and packing wire mesh layers as a supplemental absorbent area. This was done to observe their effects on the thermal performance of the solar air heater. The double-pass collector was constructed with a bed height of 0.05 m, and a collection area of 1.5 m2. The height of the upper channel was fixed at 0.015 m to improve the thermal efficiency, and the outlet temperature at air flow rates between 0.003 and 0.018 kg/s. The collector was mounted with a slope of 42° facing south, to maximize the intensity of solar irradiance during winter. The effects of the air flow rate, ambient temperature, inlet temperature, outlet temperature, and solar intensity were experimentally investigated. The results showed that thermal efficiency could be improved by increasing the air flow rate, where the highest thermal efficiency achieved was 86% at 0.018 kg/s. However, the temperature difference was increased to a maximum value of 38.6 °C, when the air flow rate was decreased to 0.003 kg/s. Furthermore, the results demonstrated a significant improvement in the thermal efficiency and outlet temperature; and when compared with previous research, the experimental results and the predictions for the outlet temperature using the theoretical model agreed.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Vorasruang Thongsukh ◽  
Chanida Kositratana ◽  
Aree Jandonpai

Introduction. In patients who require a massive intraoperative transfusion, cold fluid or blood transfusion can cause hypothermia and potential adverse effects. One method by which to prevent hypothermia in these patients is to warm the intravenous fluid before infusion. The aim of this study was to determine the effect of the fluid flow rate on the efficacy of a fluid warmer. Methods. The room air temperature was controlled at 24°C. Normal saline at room temperature was used for the experiment. The fluid was connected to an infusion pump and covered with a heater line, which constantly maintained the temperature at 42°C. The fluid temperature after warming was measured by an insulated thermistor at different fluid flow rates (100, 300, 600, 900, and 1200 mL/h) and compared with the fluid temperature before warming. Effective warming was defined as an outlet fluid temperature of >32°C. Results. The room temperature was 23.6°C ± 0.9°C. The fluid temperature before warming was 24.95°C ± 0.5°C. The outlet temperature was significantly higher after warming at all flow rates (p<0.001). The increases in temperature were 10.9°C ± 0.1°C, 11.5°C ± 0.1°C, 10.2°C ± 0.1°C, 10.1°C ± 0.7°C, and 8.4°C ± 0.2°C at flow rates of 100, 300, 600, 900, and 1200 mL/h, respectively. The changes in temperature among all different flow rates were statistically significant (p<0.001). The outlet temperature was >32°C at all flow rates. Conclusions. The efficacy of fluid warming was inversely associated with the increase in flow rate. The outlet temperature was <42°C at fluid flow rates of 100 to 1200 mL/h. However, all outlet temperatures reached >32°C, indicating effective maintenance of the core body temperature by infusion of warm fluid.


2014 ◽  
Vol 540 ◽  
pp. 326-330
Author(s):  
Yan Ma ◽  
Shuai Wu ◽  
Chu Yu Guan ◽  
Guo Hui Huang

Response surface methodology (RSM) was employed to optimize the spray drying process for walnut polypeptide, which were hydrolyzed by papain and trypsin. Air inlet temperature, air outlet temperature and feed concentration as well as cross-interaction among these factors exhibited a significant effect on collection rate and DPPH scavenging activity of walnut polypeptide powder. Results showed that the optimal drying parameters were air inlet temperature of 172℃, air outlet temperature of 88℃ and feed concentration of 23 %. The observed collection rate and DPPH scavenging activity of polypeptide powder under the optimal conditions was up to 91.28 % and 76.33 %, respectively, which was consistent with the predicted result.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 24 ◽  
Author(s):  
Georgia Kasten ◽  
Íris Duarte ◽  
Maria Paisana ◽  
Korbinian Löbmann ◽  
Thomas Rades ◽  
...  

The feasibility of upscaling the formulation of co-amorphous indomethacin-lysine from lab-scale to pilot-scale spray drying was investigated. A 22 full factorial design of experiments (DoE) was employed at lab scale. The atomization gas flow rate (Fatom, from 0.5 to 1.4 kg/h) and outlet temperature (Tout, from 55 to 75 °C) were chosen as the critical process parameters. The obtained amorphization, glass transition temperature, bulk density, yield, and particle size distribution were chosen as the critical quality attributes. In general, the model showed low Fatom and high Tout to be beneficial for the desired product characteristics (a co-amorphous formulation with a low bulk density, high yield, and small particle size). In addition, only a low Fatom and high Tout led to the desired complete co-amorphization, while a minor residual crystallinity was observed with the other combinations of Fatom and Tout. Finally, upscaling to a pilot scale spray dryer was carried out based on the DoE results; however, the drying gas flow rate and the feed flow rate were adjusted to account for the different drying chamber geometries. An increased likelihood to achieve complete amorphization, because of the extended drying chamber, and hence an increased residence time of the droplets in the drying gas, was found in the pilot scale, confirming the feasibility of upscaling spray drying as a production technique for co-amorphous systems.


2013 ◽  
Vol 6 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Katarzyna Wrzosek ◽  
Juraj Moravčík ◽  
Monika Antošová ◽  
Viera Illeová ◽  
Milan Polakovič

Abstract Optimal conditions of spray drying of a fructooligosaccharide-rich mixture prepared by enzymatic conversion of sucrose were investigated. It was found that efficient drying of the mixture containing about 40 % of monosaccharides and sucrose required addition of a compound with a high glass transition temperature. The addition of maltodextrin helped to achieve satisfactory solids yield and moisture. Optimized process parameters were the feed flow rate and solids concentration, drying air flow rate and inlet temperature.


2021 ◽  
pp. 108201322110206
Author(s):  
Jacqueline Agudelo-Chaparro ◽  
Héctor J Ciro-Velásquez ◽  
José U Sepúlveda-Valencia ◽  
Ezequiel José Pérez-Monterroza

This study aimed to microencapsulate Lactobacillus rhamnosus ( L. rhamnosus) ATCC 7469 with whey protein concentrate (WPC), maltodextrin and trehalose by spray drying and to assess the impact of microencapsulation on cell viability and the properties of the dried powders. Spray-drying conditions, including inlet air temperature, air flow rate and feed pump, were fixed as independent variables, while probiotic survival, moisture content, water activity and effective yield were established as dependent variables. The survival of encapsulated L. rhamnosus by spray drying was optimized with response surface methodology, and the stability of the powder was assessed. The optimum spray-drying conditions were an inlet air temperature, air flow rate and feed pump rate of 169 °C, 33 m3·h−1 and 16 mL·min−1, respectively, survival of 70%, air aspiration of 84% and outlet air temperature of 52 °C, achieving an overall desirability of 0.96. The physicochemical and structural characteristics of the produced powder were acceptable for application with regard to residual water content, hygroscopicity, water activity, and particle size. The results indicated that a protein-trehalose-maltodextrin mixture is a good wall material to encapsulate L. rhamnosus, showing important thermal protection during the drying process and increasing survival. However, a decrease in this capacity is observed at an air outlet temperature of approximately 101 °C. The possible effects of the wall materials and the drying conditions on survival are also discussed.


Sign in / Sign up

Export Citation Format

Share Document