scholarly journals Toxic heavy metals removal using a hydroxyapatite and hydroxyethyl cellulose modified with a new Gum Arabic

2021 ◽  
Vol 6 (1) ◽  
pp. 41-64
Author(s):  
A Errich ◽  
K Azzaoui ◽  
E Mejdoubi ◽  
B Hammouti ◽  
N Abidi ◽  
...  

The objective of this work was to develop a process that allows the synthesis of an apatitic material of controlled composition and morphology, which could be used for medical and environmental applications. The adsorbent was synthesized, and characterized using scanning electron microscopy, nuclear magnetic resonance, Thermal analysis and other techniques, Atomic Force Microscopy, X-ray photoelectron spectroscopy and Total organic carbon. Different experimental parameters such as the effect of the amount of adsorbent, solution pH and temperatures and contact times were studied. Pseudo-order kinetics models were studied, and our data followed a pseudo second order. Experimental data were analyzed for both Langmuir and Freundlich models and the data fitted well with the Langmuir isotherm model. To understand the mechanism of adsorption, thermodynamic parameters like standard enthalpy, standard Gibbs free energy, and standard entropy were studied. The study indicated that the process is spontaneous, exothermic in nature and follow physisorption mechanisms. The novelty of this study showed surface of composite based of hydroxyapatite has the ability to highlight the surface designed for efficient removal of Cu2+ and Zn2+ ions, from aqueous solutions more than other studies.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 524
Author(s):  
Hongyou Wan ◽  
Lan Nan ◽  
Huikai Geng ◽  
Wei Zhang ◽  
Huanhuan Shi

The considerable amount of Cr(VI) pollutants in the aqueous environment is a significant environmental concern that cannot be ignored. A series of novel Mxene–CS inorganic–organic composite nanomaterials synthesized by using the solution reaction method was applied to treat the Cr(VI) contaminated water. The Mxene–CS composites were characterized through SEM (scanning electron microscope), XRD (X–ray diffraction), XPS (X–ray photoelectron spectroscopy), and FTIR (Fourier transform infrared). The XRD patterns (observed at 2θ of 18.1°, 35.8°, 41.5°, and 60.1°) and the FT–IR spectra (-NH2 group for 1635 and 1517 cm−1, and -OH group for 3482 cm−1) illustrated that CS was successfully loaded on the Mxene. The effects of solution pH, the dosage of Mxene–CS, and duration time on the adsorption of Cr(VI) by synthesized Mxene–CS were investigated. The removal efficiency of Cr(VI) was increased from 12.9% to 40.5% with Mxene–CS dosage ranging from 0.02 to 0.12 g/L. The adsorption process could be well fitted by the pseudo–second–order kinetics model, indicating chemisorption occurred. The Langmuir isotherm model could be better to describe the process with a maximum adsorption capacity of 43.1 mg/g. The prepared novel Mxene–CS composite was considered as an alternative for adsorption of heavy metals from wastewater.


2018 ◽  
Vol 71 (12) ◽  
pp. 931 ◽  
Author(s):  
Baoping Zhang ◽  
Bowen Shen ◽  
Meichen Guo ◽  
Yun Liu

A novel adsorbent with the properties of selective adsorption based on rice straw was used to adsorb PtCl62− from hydrochloric acid solution by batch sorption. Many influencing factors for PtCl62− adsorption, such as initial concentration of PtCl62−, adsorption time, and concentration of hydrochloric acid, were optimized. The results suggested that the saturation adsorption capacity of PtCl62− was 218.8mgg−1 and the equilibrium adsorption time was 120min. The adsorbent had excellent selectivity on PtCl62− when the concentration of hydrochloric acid was lower than 0.5molL−1. The adsorption fitted well with the Langmuir isotherm model and pseudo-second-order kinetics model. The adsorption mechanism was investigated by FT-IR and X-ray photoelectron spectroscopy analyses and it indicated that PtIV was reduced to PtII by hydroxy groups and then coordinated with N through ion exchange between Cl− and PtCl42−.


Author(s):  
Bo Wang ◽  
Jie Yu ◽  
Hui Liao ◽  
Wenkun Zhu ◽  
Pingping Ding ◽  
...  

A novel natural honey hydrothermal biochar (HHTB) was prepared using natural honey as raw material. The as-prepared adsorbent was applied to adsorb Pb2+ from aqueous solution and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy to investigate the structure and morphology change of the adsorbent before and after Pb2+ adsorption. The influence of the pH, initial Pb2+ concentration, temperature, and contact time on the adsorption of Pb2+ was systematically investigated. The results revealed that the adsorption capacity for Pb2+ is up to 133.2 mg·g−1 at initial pH of 5.0 and adsorption temperature of 298 K. Meanwhile, the adsorption of Pb2+ on HHTB can be well fitted by the pseudo-second-order model and Langmuir isotherm model. The adsorbent had great selectivity for Pb2+ from the aqueous solution containing coexisting ions including Cd2+, Co2+, Cr3+, Cu2+, Ni2+ and Zn2+. Furthermore, the adsorption of Pb2+ on HHTB was attributed to complexation coordination, where it involved hydroxyl and carboxylic groups on HHTB in the process of adsorption of Pb2+.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1449 ◽  
Author(s):  
Xianchun Hu ◽  
Xianfeng Du

Microporous starch (MPS) granules were formed by the partial hydrolysis of starch using α–amylase and glucoamylase. Due to its biodegradability and safety, MPS was employed to adsorb tea polyphenols (TPS) based on their microporous characteristics. The influences of solution pH, time, initial concentration and temperature on the adsorptive capacity were investigated. The adsorption kinetics data conformed to the pseudo second–order kinetics model, and the equilibrium adsorption data were well described by the Langmuir isotherm model. According to the fitting of the adsorption isotherm formula, the maximum adsorption capacity of TPS onto MPS at pH 6.7 and T = 293 K was approximately 63.1 mg/g. The thermodynamic parameters suggested that the adsorption of TPS onto MPS was spontaneous and exothermic. Fourier transform infrared (FT–IR) analysis and the thermodynamics data were consistent with a physical adsorption mechanism. In addition, MPS-loaded TPS had better stability during long-term storage at ambient temperature.


2019 ◽  
Vol 80 (6) ◽  
pp. 1031-1041
Author(s):  
Yue Wang ◽  
Tianying Chang ◽  
Zhengchao Zhang ◽  
Kaijie Pei ◽  
Jie Fu ◽  
...  

Abstract Being a fundamental issue regarding sewage treatment, heavy metals removal from industrial effluents has been subject to intense scrutiny in both the academic and practical worlds. The removal of pentavalent arsenic (As(V)), one of the most poisonous pollutants, was investigated using a sodium persulfate and iron powder system activated by ferrous ions (Fe2+-ZVI-PS). As(V) could be effectively removed by an Fe2+-ZVI-PS system in a timely fashion (minute scale) with high removal rates (more than 90.0%) over a wide range of pH (1–9) and concentration (20–100 mg/L). The removal of As(V) by the Fe2+-ZVI-PS system integrated favorably with the pseudo-second-order reaction kinetics. Researches on X-ray photoelectron spectroscopy (XPS) demonstrated that the Fe2+-ZVI-PS system enables the removal of As(V) through the process of co-precipitation and adsorption. Our findings thus emphasized that the Fe2+-ZVI-PS system should be an effective trigger to purifying arsenic from the environment. Our results indicated that the Fe2+-ZVI-PS system could be an effective candidate for remediation of arsenic in the environment.


2018 ◽  
Vol 7 (3) ◽  
pp. 204-216
Author(s):  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
El Housseine Rifi ◽  
Ahmed Lebkiri

Coriandrum sativum seeds (CSS) were investigated as a new eco-friendly and economic biosorbent for the removal of methylene blue (MB) dye from synthetic solutions. First, the spectroscopic analyses were effectuated using FTIR and SEM to confirm the possibility of CSS to remove MB dye from aqueous solutions. The study of the influence of different parameters, such as contact time, CSS mass, solution pH, MB concentration, and temperature was realized and proved the rapid and efficient power adopted by CSS as a removal of the studied dye. Also, the regeneration study was effectuated for four cycles with excellent adsorption rates. The modeling studies revealed that the studied process obeys the pseudo-second-order model and Langmuir isotherm model. The adsorption amount was found to be 107.53 mg/g. Finally, the determination of thermodynamic parameters indicated the exothermic and spontaneous type of the removal process of MB onto CSS.


2020 ◽  
Vol 10 (10) ◽  
pp. 3437
Author(s):  
Jude Ofei Quansah ◽  
Thandar Hlaing ◽  
Fritz Ndumbe Lyonga ◽  
Phyo Phyo Kyi ◽  
Seung-Hee Hong ◽  
...  

We assessed the applicability of rice husk (RH) to remove cationic dyes, i.e., methylene blue (MB) and crystal violet (CV), from water. RH thermally treated at 75 °C showed a higher adsorption capacity than that at high temperatures (300–700 °C). For a suitable CV-adsorption model, a pseudo-first-order model for MB adsorption was followed by the kinetics adsorption process; however, a pseudo-second-order model was then suggested. In the qt versus t1/2 plot, the MB line passed through the origin, but that of CV did not. The Langmuir isotherm model was better than the Freundlich model for both dye adsorptions; furthermore, the adsorption capacity for MB and CV was 24.48 mg/g and 25.46 mg/g, respectively. Thermodynamically, the adsorption of both MB and CV onto the RH was found to be spontaneous and endothermic. This adsorption increased insignificantly on increasing the solution pH from 4 to 10. With an increasing dosage of the RH, there was an increase in the removal percentages of MB and CV; however, adsorption capacity per unit mass of the RH was observed to decrease. Therefore, we conclude that utilizing RH as an available and affordable adsorbent is feasible to remove MB and CV from wastewater.


2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 962
Author(s):  
Kuo-Yu Chen ◽  
Wei-Yu Zeng

Poly-γ-glutamate/apatite (PGA-AP) nanoparticles were prepared by chemical coprecipitation method in the presence of various concentrations of poly-γ-glutamate (γ-PGA). Powder X-ray diffraction pattern and energy-dispersive spectroscopy revealed that the main crystal phase of PGA-AP was hydroxyapatite. The immobilization of γ-PGA on PGA-AP was confirmed by Fourier transform infrared spectroscopy and the relative amount of γ-PGA incorporation into PGA-AP was determined by thermal gravimetric analysis. Dynamic light scattering measurements indicated that the particle size of PGA-AP nanoparticles increased remarkably with the decrease of γ-PGA content. The adsorption of aqueous Cu(II) onto the PGA-AP nanoparticles was investigated in batch experiments with varying contact time, solution pH and temperature. Results illustrated that the adsorption of Cu(II) was very rapid during the initial adsorption period. The adsorption capacity of PGA-AP nanoparticles for Cu(II) was increased with the increase in the γ-PGA content, solution pH and temperature. At a pH of 6 and 60 °C, a higher equilibrium adsorption capacity of about 74.80 mg/g was obtained. The kinetic studies indicated that Cu(II) adsorption onto PGA-AP nanoparticles obeyed well the pseudo-second order model. The Langmuir isotherm model was fitted well to the adsorption equilibrium data. The results indicated that the adsorption behavior of PGA-AP nanoparticles for Cu(II) was mainly a monolayer chemical adsorption process. The maximum adsorption capacity of PGA-AP nanoparticles was estimated to be 78.99 mg/g.


2021 ◽  
Vol 11 (19) ◽  
pp. 9257
Author(s):  
Seong-Jik Park ◽  
Yeon-Jin Lee ◽  
Jin-Kyu Kang ◽  
Je-Chan Lee ◽  
Chang-Gu Lee

This study assessed the applicability of Fe-impregnated biochar derived from cattle manure (Fe-CMB) as an adsorbent for removing Sb(V) from aqueous solutions and investigated the Sb(V) adsorption mechanism. Fe-CMB was mainly composed of C, O, Cl, Fe, Ca, and P, and the adsorption of Sb(V) onto Fe-CMB was identified using an energy dispersive spectrometer and Fourier transform infrared spectroscopy. Sb(V) adsorption reached equilibrium within 6 h, and the Sb(V) adsorption data as a function of time were well described by the pseudo-second-order model. The Langmuir isotherm model fit the equilibrium data better than the Freundlich model. The maximum adsorption capacity of Fe-CMB for Sb(V) obtained from the Langmuir model was 58.3 mg/g. Thermodynamic analysis of Sb(V) adsorption by Fe-CMB indicated that the adsorption process was exothermic and spontaneous. The Sb(V) removal percentage increased with the Fe-CMB dose, which achieved a removal of 98.5% at 10.0 g/L Fe-CMB. Increasing the solution pH from 3 to 11 slightly reduced Sb(V) adsorption by 6.5%. The inhibitory effect of anions on Sb(V) adsorption followed the order: Cl− ≈ NO3− < SO42− < HCO3− < PO43−.


Sign in / Sign up

Export Citation Format

Share Document