scholarly journals Biocontrol Potential of Neem Leaf-Based Vermicompost as Indicated by Chitinase, Protease and Β-1,3-Glucanase Activity

2021 ◽  
Vol 50 (5) ◽  
pp. 1267-1275
Author(s):  
Khye Er Loh ◽  
Nor Azwady Abdul Aziz ◽  
Muskhazli Mustafa ◽  
Intan Safinar Ismail

The rising concern regarding the negative impact of synthetic pesticides has led to the search for alternative means of pest control. Vermicomposting the mixture of oil palm empty fruit bunch and neem (Azadirachta indica) leaves, with the latter known to have pesticidal value, is therefore of great interest and significance to be studied. The present study was conducted to evaluate the chitinase, protease and β-1,3-glucanase activity of neem leaf-based vermicompost as an indication of its biocontrol properties. The total microbial population of different composition of the vermicompost was also investigated. The results showed that at 10% neem composition, an increment in microbial population, chitinase and protease activities was observed in the end product. A higher concentration of neem exerted a suppressive effect on the microbial population as well as enzymatic activity. This study suggested that the addition of an appropriate composition of neem leaves as one of the raw materials for vermicomposting would potentially enhance the performance of vermicompost as biofertilizer as well as biopesticide.

2021 ◽  
pp. 0734242X2110085
Author(s):  
Jabulani I Gumede ◽  
Buyiswa G Hlangothi ◽  
Chris D Woolard ◽  
Shanganyane P Hlangothi

There is a growing need to recover raw materials from waste due to increasing environmental concerns and the widely adopted transition to circular economy. For waste tyres, it is necessary to continuously develop methods and processes that can devulcanize rubber vulcanizates into rubber products with qualities and properties that can closely match those of the virgin rubber. Currently, the most common, due to its efficiency and perceived eco-friendliness in recovering raw rubber from waste rubbers, such as tyres, is devulcanization in supercritical carbon dioxide (scCO2) using commercial and typical devulcanizing agents. The scCO2 has been generally accepted as an attractive alternative to the traditional liquid-based devulcanization media because of the resultant devulcanized rubber has relatively better quality than other processes. For instance, when scCO2 is employed to recover rubber from waste tyres (e.g. truck tyres) and the recovered rubber is blended with virgin natural rubber (NR) in various compositions, the curing and mechanical properties of the blends closely match those of virgin NR. The atmospheric toxicity and cost of the commonly used devulcanization materials like chemical agents, oils and solvents have enabled a shift towards utilization of greener (mainly organic) and readily available devulcanization chemical components. This literature review paper discusses the approaches, which have less negative impact on the environment, in chemical devulcanization of rubber vulcanizates. A special focus has been on thermo-chemical devulcanization of waste tyres in scCO2 using common organic devulcanizing agents.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4705
Author(s):  
Ewa Kochańska ◽  
Rafał M. Łukasik ◽  
Maciej Dzikuć

The COVID-19 pandemic has set new challenges for the HoReCa industry. Lockdowns have coincided with and strongly impacted the industrial transformation processes that have been taking place for a decade. Among the most important HoReCa transition processes are those related to the rapid growth of the delivery-food market and ordering meals via internet platforms. The new delivery-food market requires not only the development of specific distribution channels, but also the introduction of appropriate, very specific food packaging. Food packaging and its functionality are defined by the administrative requirements and standards applicable to materials that have contact with food and principally through the prism of the ecological disaster caused by enormous amounts of plastic waste, mainly attributed to the food packaging. To meet environmental and administrative requirements, new technologies to produce food packaging materials are emerging, ensuring product functionality, low environmental impact, biodegradability, and potential for composting of the final product. However, predominantly, the obtained product should keep the nutritional value of food and protect it against changes in color or shape. Current social transformation has a significant impact on the food packaging sector, on one hand creating a new lifestyle for society all over the world, and on the other, a growing awareness of the negative impact of humans on the environment and increasing responsibility for the planet. The COVID-19 pandemic has highlighted the need to develop a circular economy based on the paradigm of shortening distribution channels, using local raw materials, limiting the consumption of raw materials, energy, water, and above all, minimizing waste production throughout the life cycle of products, all of which are in line with the idea of low-carbon development.


Author(s):  
Marcela Spišáková ◽  
Mária Kozlovská ◽  
Jozef Švajlenka

Construction industry creates an environment for people's lives. On the other hand, construction activities have a negative impact on various aspects of the environment. It consumes natural raw materials, significantly contributes to carbon footprint, waste, etc. Appropriate choice of constructional, material, technical, technological and environmental parameters of buildings can partially reduce this negative impacts. By designing, implementing and using wood-based constructions it is possible to reduce the negative impact in the area of construction waste generation. Currently, the construction market offers a large number of construction systems of wooden buildings, which have both strengths and weaknesses. In this paper are identified construction systems of wooden buildings offered on the Slovak construction market. The aim of the paper is a detailed identification of construction waste generation during the realization of particular wooden structures and monitoring of waste generation in production factory (off site) and on construction site (on site) during the construction of wooden buildings. Based on the obtained information, the individual construction systems of wood-based constructions are compared in terms of construction waste generation


2020 ◽  
Vol 11 (2) ◽  
pp. 2350-2354
Author(s):  
Tatyana V. Kabanova ◽  
Mariya V. Dolgorukova ◽  
Sergey I. Okhotnikov ◽  
Elena V. Tsaregorodtseva ◽  
Sergey Yu. Smolentsev ◽  
...  

The urgency of the problem of increasing the nutritional qualities of mare's milk is that, it has versatile uses. Many people traditionally prefer koumiss made of milk with high fat content, as it has good taste, mouth-watering appearance, high calorie content, helps to increase liver weight. In many patients, including tuberculosis, hypotrophic and malnourished due to a long and serious illness, the latter aspect is an important part of treatment. In the production of raw materials for baby and diet food, first of all, it is necessary to achieve an increase in the protein and fat content of mares, as well as to stabilize the content of valuable components in milk during lactation. Therefore, the search for methods for correcting the composition of dairy raw materials is relevant to industry issues. This article presents the results on the research of influence of Hydro mechanical processing on the physicochemical and microbiological properties of mare's milk. Milk processing treatment by gaseous nitrogen was carried out at laboratory-patented system. This method has not had a negative impact on its physical and chemical characteristics, but significantly increased the bactericidal life. The introduction of pure cultures of koumiss leaven in processed and not processed raw milk has reduced the acidity build-up to the optimal value allowing increase in the life of koumiss.


2021 ◽  
Vol 13 (2) ◽  
pp. 188-200
Author(s):  
Vladimir MASLOBOEV ◽  
◽  
Dmitry MAKAROV ◽  
Elena KLYUCHNIKOVA ◽  
◽  
...  

The Murmansk region is a region with the largest enterprises of the mining complex of the Russian Federation: KF JSC “Apatit”, JSC “Kola MMC”, JSC “Olkon”, JSC” Kovdorsky GOK”, JSC” North-West Phosphorus Company”, LLC”Lovozersky GOK”. They provide the majority of the country’s demand for phosphate ores, zirconium raw materials (baddeleyite), niobium, tantalum, and rare earth metals. In addition, the mining and processing of copper-nickel, iron and chrome ores, nepheline and ceramic raw materials, facing stone and building materials is carried out. At the same time, the activities of enterprises have a very negative impact on the environment. The issues of environmental safety in the extraction and processing of minerals, storage of mining waste in the Arctic zone of the Russian Federation are of particular relevance. The definition of sustainable development in relation to the mining industry is given. The concepts of available best technologies, circular economy, and “green growth” are considered from the point of view of their contribution to sustainable development. It is shown that the sustainable development of enterprises at the present stage is impossible without improving the environmental friendliness of production. The article analyzes the legislation of the Russian Federation and the practice of its application to identify mechanisms that promote sustainable development and eliminate barriers to the implementation of this concept in the mining industry. New technological solutions have been developed for mining enterprises of the Murmansk region, aimed at reducing aero-technogenic emissions, cleaning waste (mine) water, processing tailings of enrichment as man-made deposits, which allows both to minimize man-made environmental impacts and to increase the full use of mineral raw materials. Thus, the expediency of using the principles of “green growth” for the development of economic development policies in the Arctic is justified.


Author(s):  
V.I. Dorozhkin ◽  

The article presents materials on the toxicological and biological safety of livestock products: contaminants of various natures that contaminate raw materials and food products (microorganisms, viruses, mycotoxins, parasites, heavy metals, etc.) are presented. To ensure biological and toxicological safety of livestock products and public health, the implementation of legislation, as well as decisions of the President of the Russian Federation, it is proposed to provide the development of a national innovative system for protecting animal health from the negative effects of pathogens and toxicants, including: conducting research on the development of fundamental foundations for the protection of animal health from the negative impact of ecotoxicants and veterinary and sanitary welfare, improvement of regulatory and legislative documents on the organization of quality control and safety of raw materials and food products; restoration of the procedure for state registration of diagnostic test systems, disinfectants, insectoacaricides and rodenticides; creation of the State Veterinary Pharmacological and Biological «State Veterinary Pharmaceutical Commission». For the implementation of these measures, provide federal state budgetary funding.


2021 ◽  
Vol 27 (4) ◽  
pp. 45-54
Author(s):  
G. Yurgenson ◽  
◽  
L. Shumilova ◽  
А. Khatkova ◽  
◽  
...  

The relevance of the research is the need to recultivate the waste from the enrichment of gold-bearing ores that lie in the immediate vicinity of the residential areas of Baley city, which have a negative impact on the environmental situation in it, as well as to develop a technological approach to the extraction of gold and silver. The purpose of the study is to study the material composition and develop a technology for extracting precious metals. The object of the study is the stale tailings of the ZIF-1 plant “Baleizoloto”. The subject of the study is mineral composition of stale tailings, content of useful components and their extraction technology, the method and methodology presented by mineralogical and chemical analyses of enrichment tailings. Results. The analysis of the tailings dumps’ state of the gold recovery factories of the Baleizoloto plant was carried out. The contents of gold and other chemical elements, among which arsenic, zinc, copper, antimony, and lead predominate, were determined. The gold content prevails in the stale tailings of the ZIF-1 factory, which processed the ores of the Baley deposit, and is in the range of 1.09-1.37 g / t, on average – 1.17 g/t. This determines the prospects for their primary processing. The gold in the clay-sand fraction of the stale tailings is mainly found in thin accretions with quartz, carbonates, pyrite, arsenopyrite, sulfosols, and tellurides. The field of application is processing of technogenic raw materials. Conclusions. It was determined that the sizes of gold inclusions are in the range of 0.7-0.03 mm, the gold penetration varies from 63 to 91.15, and on average is 82.13; the main impurity in gold is silver with a content of 8.85-37%; the average silver content in the tailings of the ZIF-1 factory is 1.85 g/t; the recommended technological scheme for processing stale tailings of ZIF-1 of the Baleizoloto plant has been developed, including the following operations: photoelectron-activation preparation, pelletizing with active solution, heap leaching, two-stage sorption with bubbling with ozone


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shuncheng Xiang ◽  
Yingli Gao

In this paper, modified polyurethane prepolymer was synthesized by the segmental synthesis method using isophorone diisocyanate (IPDI), hydroxyl-terminated silicone, and polyether glycol dimethylolpropionic acid as raw materials. After that, pectiniform polycarboxylate, of which side chains were in roughly the same polymerization degree and main chains were in different lengths, was synthesized at normal temperature in the complex initiation system of H2O2, APS, sodium bisulfite, and Vc. Then, compared with commercial Sika polycarboxylate, their applications in ultrahigh-performance concrete (HUPC), including flowability, strength, drying shrinkage, and autogenous shrinkage, were investigated. The results showed that, due to the molecular structure of polyorganosiloxane, the synthesized polycarboxylate could be better dispersed. Dosage of silica fume could effectively improve the compressive strength of UHPC, while slag had a certain negative impact on its strength. Incorporation of slag and silica fume could effectively reduce the dry shrinkage of UHPC.


2019 ◽  
Vol 10 (2) ◽  
pp. 29 ◽  
Author(s):  
Dongxiao Wu ◽  
Jin Ren ◽  
Huw Davies ◽  
Jinlei Shang ◽  
Olivier Haas

Road transport is recognized as having a negative impact on the environment. Policy has focused on replacement of the internal combustion engine (ICE) with less polluting forms of technology, including battery electric and fuel cell electric powertrains. However, progress is slow and both battery and fuel cell based vehicles face considerable commercialization challenges. To understand these challenges, a review of current electric battery and fuel cell electric technologies is presented. Based on this review, this paper proposes a battery electric vehicle (BEV) where components are sized to take into account the majority of user requirements, with the remainder catered for by a trailer-based demountable intelligent fuel cell range extender. The proposed design can extend the range by more than 50% for small BEVs and 25% for large BEVs (the extended range of vehicles over 250 miles), reducing cost and increasing efficiency for the BEV. It enables BEV manufacturers to design their vehicle battery for the most common journeys, decreases charging time to provide convenience and flexibility to the drivers. Adopting a rent and drop business model reduces the demand on the raw materials, bridging the gap in the amount of charging (refueling) stations, and extending the lifespan for the battery pack.


Sign in / Sign up

Export Citation Format

Share Document