scholarly journals Gastrointestinal Tract Digestion and Carrageenan: How Misconceptions have influenced the Understanding of Carrageenan Safety

2019 ◽  
pp. 364-376
Author(s):  
McKim JM ◽  
Willoughby JA ◽  
Blakemore WR ◽  
Weiner ML

Carrageenan (CGN) is a naturally occurring fiber isolated from various species of red seaweeds (class Rhodophyceae). It has been safely consumed for hundreds of years and today is approved for use in the food industry as a food additive by regulatory agencies around the world. Unfortunately, some researchers have used misleading and incorrect interpretations of early studies to suggest that food-grade CGN (Mw = 200,000 to 800,000 Da.) is not safe for human consumption. These researchers reference studies conducted with the acid-hydrolysis products of CGN, which include degraded carrageenan (d-CGN; Mw = 20,000 to 40,000 Da.) and poligeenan (PGN; Mw = 10,000 to 20,000 Da.), as evidence of the potential adverse health effects of high Mw CGN. While PGN and d-CGN have been shown to have adverse effects in vivo, the same is not true for CGN. Both PGN and d-CGN are made in the laboratory under harsh conditions of low pH (< 2.0) and high temperature (80°C), and have distinctly different physical, chemical and toxicological profiles than CGN. Studies have shown that d-CGN and PGN are not formed in vivo after ingesting CGN, nor are d-CGN and PGN used as food additives. Yet these differences between d-CGN/PGN and CGN are either not understood or are ignored by many authors in the published literature and the adverse effects observed with d-CGN and PGN are being used to question the safety of CGN. This has caused significant confusion in the literature and with regulators. Here we review the physical, chemical and toxicological properties of CGN, d-CGN and PGN. We then review the ingestion of CGN, how the formation of d-CGN and PGN does not occur in vivo. Finally, we discuss recent review providing a prime example of how some publications use misinformation to suggest CGN is unsafe for ingestion.

2020 ◽  
Vol 9 (6) ◽  
pp. 808-822
Author(s):  
James D Ede ◽  
Kimberly J Ong ◽  
Marina R Mulenos ◽  
Sahar Pradhan ◽  
Matthew Gibb ◽  
...  

Abstract Cellulose nanocrystals (CNCs) are a next-generation cellulose product with many unique properties including applications in the food industry as a food additive, food coating, and in food-contact packaging material. While CNC is anticipated to be safe due to its similarity to the many forms of cellulose currently used as food additives, special consideration is given to it as it is the first manufactured form of cellulose that is nanoscale in both length and width. A proactive approach to safety has been adopted by manufacturers to demonstrate CNC safety toward responsible commercialization. As part of the safety demonstration, in vivo and in vitro testing strategies were commissioned side-by-side with conventional cellulose, which has been safely used in food for decades. Testing included a 90-day rodent feeding study as well as additional physical, chemical, and biological studies in vitro that follow European Food Safety Authority (EFSA) guidance to demonstrate the safe use of novel food ingredients. The strategy includes assessment of neat materials side-by-side with simulated digestion, mimicking conditions that occur along the gastrointestinal tract as well as intracellularly. An intestinal co-culture model examined any potential toxicological effects from exposure to either pristine or digested forms of CNC including cytotoxicity, metabolic activity, membrane permeability, oxidative stress, and proinflammatory responses. None of the studies demonstrated any toxicity via oral or simulated oral exposure. These studies demonstrate that CNC produced by InnoTech Alberta is similarly safe by ingestion as conventional cellulose with a no-observed-adverse-effect level of 2085.3 (males) and 2682.8 (females) mg/kg/day.


Author(s):  
Miriam del Carmen Carrasco-Portugal ◽  
Francisco Javier Flores-Murrieta

Pharmaceutical alternatives are products with the same active moiety, but different salt, ester or pharmaceutical form. Regulatory agencies have different criteria for this kind of drug. The European Medicines Agency (EMA) accepts the generic substitution using these alternatives, whereas the Food and Drug Administration (FDA) only authorizes generic substitution of pharmaceutical equivalents. The objective of this paper is to describe some relevant aspects that should be considered before deciding on making a generic substitution with pharmaceutical alternatives. It is important to note that a pharmaceutical alternative must show no significant difference in the rate and extent of absorption (bioequivalence) in a well-conducted in vivo study when compared with the reference formulation. Current Mexican regulations state that generic substitution is possible using pharmaceutical alternatives when bioequivalence is demonstrated in in vivo studies conducted under the NOM-177-SSA1-2013 criteria. In conclusion, generic substitution with pharmaceutical alternatives is possible if these products demonstrate in vivo bioequivalence when compared with the reference product.


1995 ◽  
Vol 32 (11) ◽  
pp. 145-152 ◽  
Author(s):  
M. El-S. Easa ◽  
M. M. Shereif ◽  
A. I. Shaaban ◽  
K. H. Mancy

Public health and safety concerns have traditionally been the main reasons for resisting waste water reuse for fish farming. Potential adverse health effects in such applications could be avoided if the waste is sufficiently treated before reuse. In a full scale demonstration study in Suez, Egypt, about 400 m3/d of raw sewage were treated using a multi-compartment stabilization pond system, for a total residence time from 21-26 days. The treated effluent conformed to WHO guidelines and was used for rearing two types of local fish (tilapia and gray mullet). The produced fish were subjected to an extensive monitoring program. Bacteriological examination revealed that in all samples the fish muscles were free of bacterial contaminants. Nevertheless, low levels of Escherichia coli andAeromonas hydrophila, were isolated from the surface of the fish. Salmonellae, shigellae and staphylococcus aureus were absent from the surface of all the fish sampled. In addition, toxic metals (Pb, Cu, Zn, and Cd) were found to be at much lower levels than the international advisory limits for human consumption. It is concluded that fish reared in the treated effluent at Suez Experimental Station is (a) suitable for marketing for human consumption, and (b) it's quality is equal or better than fresh water fish in Egypt.


2020 ◽  
Vol 16 (8) ◽  
pp. 1227-1244
Author(s):  
Dharmendra Kumar ◽  
Pramod K. Sharma

Background:: Opuntia species, locally known as prickly pear was used for various purposes as food, medicine, beverage, source of dye and animal food. Many studies have revealed its pharmacology activity from time to time. This review is a collection of chemistry, pharmacognosy, pharmacology and bioapplications of the cactus family. Methods: Many sources were used to collect information about Opuntia species such as Pub med, Google scholar, Agris, science direct, Embase, Merk index, Wiley online library, books and other reliable sources. This review contains studies from 1812 to 2019. Results: The plants from the cactus family offer various pharmacological active compounds including phenolic compounds, carotenoids, betalains, vitamins, steroids, sugar, amino acids, minerals and fibers. These bioactive compounds serve various pharmacological activities such as anticancer, antiviral, anti-diabetic, Neuroprotective, anti-inflammatory, antioxidant, Hepatoprotective, antibacterial, antiulcer and alcohol hangover. According to various studies, Opuntia species offer many bioapplications such as fodder for animal, soil erosion, prevention, human consumption and waste water decontamination. Finally, different parts of plants are used in various formulations that offer many biotechnology applications. Conclusion: Different parts of Opuntia plant (fruits, seeds, flowers and cladodes) are used in various health problems which include wound healing, anti-inflammatory and urinary tract infection from ancient times. Nowadays, researches have extended several pharmacological and therapeutic uses of Opuntia species as discussed in this review. Many in-vitro and in-vivo models are also discussed in this review as the proofs of research findings. Various research gaps have been observed in current studies that require attention in the future.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Katharina A. Sterenczak ◽  
Nadine Stache ◽  
Sebastian Bohn ◽  
Stephan Allgeier ◽  
Bernd Köhler ◽  
...  

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rayko Evstatiev ◽  
Adam Cervenka ◽  
Tina Austerlitz ◽  
Gunther Deim ◽  
Maximilian Baumgartner ◽  
...  

AbstractInflammatory bowel disease is a group of conditions with rising incidence caused by genetic and environmental factors including diet. The chelator ethylenediaminetetraacetate (EDTA) is widely used by the food and pharmaceutical industry among numerous other applications, leading to a considerable environmental exposure. Numerous safety studies in healthy animals have revealed no relevant toxicity by EDTA. Here we show that, in the presence of intestinal inflammation, EDTA is surprisingly capable of massively exacerbating inflammation and even inducing colorectal carcinogenesis at doses that are presumed to be safe. This toxicity is evident in two biologically different mouse models of inflammatory bowel disease, the AOM/DSS and the IL10−/− model. The mechanism of this effect may be attributed to disruption of intercellular contacts as demonstrated by in vivo confocal endomicroscopy, electron microscopy and cell culture studies. Our findings add EDTA to the list of food additives that might be detrimental in the presence of intestinal inflammation, but the toxicity of which may have been missed by regulatory safety testing procedures that utilize only healthy models. We conclude that the current use of EDTA especially in food and pharmaceuticals should be reconsidered. Moreover, we suggest that intestinal inflammatory models should be implemented in the testing of food additives to account for the exposure of this primary organ to environmental and dietary stress.


Author(s):  
Snežana Đorđević ◽  
María Medel Gonzalez ◽  
Inmaculada Conejos-Sánchez ◽  
Barbara Carreira ◽  
Sabina Pozzi ◽  
...  

AbstractThe field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines. Graphical abstract


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 369
Author(s):  
Jennifer Schwestka ◽  
Eva Stoger

The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


Sign in / Sign up

Export Citation Format

Share Document