scholarly journals Bacteriophage Growth Promoters in Poultry

Author(s):  
C. Honorio Javes ◽  
Y. Vallenas Sánchez

In recent years, there has been an increase in bacterial resistance to antimicrobials found in both animals and humans, and in some countries, the use of antibiotics as growth promoters has been prohibited. Therefore, this article reviewed bacteriophages (viruses that infect bacteria) as a substitute for antibiotic-type growth promoters, since they can help control the main bacterial pathogens such as Salmonella and E. coli that affect birds, improve production parameters in broilers and laying hens, and are more efficient than antibiotic-type growth promoters. Keywords:   bacteriophages, promoter’s growth, antibiotics, poultry. RESUMEN En los últimos años, la resistencia bacteriana a los antimicrobianos encontrada tanto en animales como en humanos y la prohibición del uso de antibióticos como promotores de crecimiento en algunos países son las nuevas variables a tener en cuenta. Por lo tanto, este artículo revisa los bacteriófagos (virus que infectan bacterias) como sustituto de promotores de crecimiento tipo antibiótico, ya que pueden ayudar a controlar los principales patógenos bacterianos como Salmonella y E. coli que afectan a las aves, mejoran los parámetros productivos en broilers y gallinas de postura y son más eficientes que los promotores de crecimiento tipo antibiótico. Palabras clave: bacteriófagos, promotores de crecimiento, antibióticos, avicultura.

Author(s):  
Nor Fadhilah Kamaruzzaman ◽  
Shamsaldeen Saeed

Abstract:Salmonella species (spp) and Escherichia coli (E. coli) are the most common infectious pathogens in poultry. Antimicrobials were given either for the treatment or growth promoters that can increase the possibility of emergence of bacterial resistance towards antimicrobials. The aim of this study was to determine the prevalence of antimicrobial resistant (AMR) Salmonella spp and E. coli isolated from a sample of broiler farms in East Coast Malaysia from 2018-2019. A total of 384 cloacal swabs were collected from broilers farms in Kelantan, Terengganu, and Pahang. The bacteria were isolated and confirmed by bacteriological and serological methods. Following that, confirmed isolates were subjected to antimicrobial susceptibility test. Salmonella spp and E. coli were recovered from the cloacal swabs samples with the overall prevalence of 6.5% and 51.8% respectively. In Kelantan, Terengganu and Pahang, the prevalence of Salmonella spp were 7%, 6.5% and 5.8% respectively, while the prevalence for E. coli were 50%, 48.3% and 58% respectively. Salmonella spp and E. coli displayed resistance towards the following antimicrobials: erythromycin (100% for both pathogens), chloramphenicol (76.2%, 84.5%), tetracycline (62%, 94.6%), ampicillin (47.7%, 87%), sulfamethoxazole/trimethoprim (42.9%, 83.3%), ciprofloxacin (4.8%, 23.8%), nalidixic acid (9.6%, 60.7%), streptomycin (19%,66%), and kanamycin (28.6%,57%), cephalotin (0%, 11%), gentamicin (0%, 20.2%) respectively. No resistance were recorded towards colistin for both pathogens. Multidrug resistance (MDR) was recorded in 82% of Salmonella spp and 100% of E. coli. These findings demonstrate the high prevalence of MDR Salmonella spp. and E. coli in broiler farms in East coast Malaysia. This could be attributed to the excessive use of antimicrobial agents by the poultry farm owners. Enhanced control measures and a strong monitoring system should be urgently implemented to reduce the emergence of antimicrobial resistance that is harmful to public health.


2019 ◽  
Vol 70 (5) ◽  
pp. 1778-1783
Author(s):  
Andreea-Loredana Golli ◽  
Floarea Mimi Nitu ◽  
Maria Balasoiu ◽  
Marina Alina Lungu ◽  
Cristiana Cerasella Dragomirescu ◽  
...  

To determine the resistance pattern of bacterial pathogens involved in infections of the patients aged between 18-64 years, admitted in a ICU from a 1518-bed university-affiliated hospital. A retrospective study of bacterial pathogens was carried out on 351 patients aged between 18-64 years admitted to the ICU, from January to December 2017. In this study there were analysed 469 samples from 351 patients (18-64 years). A total of 566 bacterial isolates were obtained, of which 120 strains of Klebsiella spp. (35.39%%), followed by Nonfermenting Gram negative bacilli, other than Pseudomonas and Acinetobacter (NFB) (75- 22.12%), Acinetobacter spp. (53 - 15.63%), Pseudomonas aeruginosa and Proteus (51 - 15.04%), and Escherichia coli (49 - 14.45%). The most common isolates were from respiratory tract (394 isolates � 69.61%). High rates of MDR were found for Pseudomonas aeruginosa (64.70%), MRSA (62.65%) and Klebsiella spp. (53.33%), while almost all of the isolated NFB strains were MDR (97.33%). There was statistic difference between the drug resistance rate of Klebsiella and E. coli strains to ceftazidime and ceftriaxone (p[0.001), cefuroxime (p[0.01) and to cefepime (p[0.01). The study revealed an alarming pattern of antibiotic resistance in the majority of ICU isolates.


Author(s):  
Cláudia A. Ribeiro ◽  
Luke A. Rahman ◽  
Louis G. Holmes ◽  
Ayrianna M. Woody ◽  
Calum M. Webster ◽  
...  

AbstractThe spread of multidrug-resistance in Gram-negative bacterial pathogens presents a major clinical challenge, and new approaches are required to combat these organisms. Nitric oxide (NO) is a well-known antimicrobial that is produced by the immune system in response to infection, and numerous studies have demonstrated that NO is a respiratory inhibitor with both bacteriostatic and bactericidal properties. However, given that loss of aerobic respiratory complexes is known to diminish antibiotic efficacy, it was hypothesised that the potent respiratory inhibitor NO would elicit similar effects. Indeed, the current work demonstrates that pre-exposure to NO-releasers elicits a > tenfold increase in IC50 for gentamicin against pathogenic E. coli (i.e. a huge decrease in lethality). It was therefore hypothesised that hyper-sensitivity to NO may have arisen in bacterial pathogens and that this trait could promote the acquisition of antibiotic-resistance mechanisms through enabling cells to persist in the presence of toxic levels of antibiotic. To test this hypothesis, genomics and microbiological approaches were used to screen a collection of E. coli clinical isolates for antibiotic susceptibility and NO tolerance, although the data did not support a correlation between increased carriage of antibiotic resistance genes and NO tolerance. However, the current work has important implications for how antibiotic susceptibility might be measured in future (i.e. ± NO) and underlines the evolutionary advantage for bacterial pathogens to maintain tolerance to toxic levels of NO.


2010 ◽  
Vol 54 (12) ◽  
pp. 5193-5200 ◽  
Author(s):  
Victoire de Lastours ◽  
Françoise Chau ◽  
Florence Tubach ◽  
Blandine Pasquet ◽  
Etienne Ruppé ◽  
...  

ABSTRACT The important role of commensal flora as a natural reservoir of bacterial resistance is now well established. However, whether the behavior of each commensal flora is similar to that of other floras in terms of rates of carriage and risk factors for bacterial resistance is unknown. During a 6-month period, we prospectively investigated colonization with fluoroquinolone-resistant bacteria in the three main commensal floras from hospitalized patients at admission, targeting Escherichia coli in the fecal flora, coagulase-negative Staphylococcus (CNS) in the nasal flora, and α-hemolytic streptococci in the pharyngeal flora. Resistant strains were detected on quinolone-containing selective agar. Clinical and epidemiological data were collected. A total of 555 patients were included. Carriage rates of resistance were 8.0% in E. coli, 30.3% in CNS for ciprofloxacin, and 27.2% in streptococci for levofloxacin; 56% of the patients carried resistance in at least one flora but only 0.9% simultaneously in all floras, which is no more than random. Risk factors associated with the carriage of fluoroquinolone-resistant strains differed between fecal E. coli (i.e., colonization by multidrug-resistant bacteria) and nasal CNS (i.e., age, coming from a health care facility, and previous antibiotic treatment with a fluoroquinolone) while no risk factors were identified for pharyngeal streptococci. Despite high rates of colonization with fluoroquinolone-resistant bacteria, each commensal flora behaved independently since simultaneous carriage of resistance in the three distinct floras was uncommon, and risk factors differed. Consequences of environmental selective pressures vary in each commensal flora according to its local specificities (clinical trial NCT00520715 [http://clinicaltrials.gov/ct2/show/NCT00520715 ]).


2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 259-259
Author(s):  
Yuhui Zheng ◽  
Shengli Li

Abstract Bovine mastitis is one of the major diseases which directly affects the milk production performance and it causes huge economic losses in the dairy industry. Bacterial infection is the main risk factor of bovine mastitis and the antibiotic therapy is the primary choice to control the disease. However, persistence use of antibiotic increases the incidence of bacterial resistance and traces of antibiotic residues in animal products. Lactobacillus casei Zhang is one of the probiotics with multiple biological functions, which has certain bacteriostatic effect on pathogenic microorganism. The purpose of this study was to explore the effect of Lactobacillus casei Zhang (L. casei Zhang) on the prevention of E. coli-induced milk-blood barrier damage. Bovine mammary epithelial cells (BMECs) were used to establish a milk-blood model and Control group (PBS), E. coli group, and L. casei Zhang pretreatment plus E. coli group were set up respectively. The results showed that: L. casei Zhang could significantly reduce the increase of LDH release caused by E. coli treatment (P&lt; 0.05). And it can also significantly reduce the decrease of transmembrane resistance of monolayer cells caused by E. coli treatment (P&lt; 0.05). In addition, L. casei Zhang could significantly reduce the expression of tight junction proteins ZO-1, Claudin-1, Claudin-4 and Occludin (P &lt; 0.05). In conclusion, L. casei Zhang could effectively improve the damage of the blood-milk barrier caused by E. coli and could protect BMECs during bacterial infection.


2021 ◽  
Vol 56 (2) ◽  
pp. 281-290
Author(s):  
Andreas Berny Yulianto ◽  
Anam Al Arif ◽  
Widya Paramita Lokapirnasari

This article describes a new idea about using Bifidobacteriumsp isolates as an alternative to antibiotic growth promoters, based on the ability of Bifidobacteriumsp isolates, which have the potential as a probiotic in laying hens. This study aims to prove that Bifobacteriumsp could improve production performance, including feed conversion ratio, feed efficiency, and nutrient intake (feed intake, crude protein intake, crude fiber intake, lipid intake, and organic matter). A total of 150 laying hens at 25 weeks of age were divided into three groups (P0: control, P1: 0.1% antibiotic growth promoters, P1: 0.05% Bifidobacterium spp. probiotic) and fed on a basal diet containing 2750 kcal/kg metabolizable energy and 18% crude protein for four weeks. The different supplementation to the basal diets showed significant differences (p<0.05) on feed conversion ratio, feed efficiency, feed intake, crude protein intake, crude fiber intake, lipid intake, and organic matter intake among the treatments. However, feed intake, feed conversion ratio, crude protein intake, crude fiber intake, lipid intake, and organic matter intake were lowest in the group fed with 0.5% of Bifidobacterium spp. The highest feed efficiency was obtained from the groups fed with 0.5% of Bifidobacterium spp, compared with the control and supplemented antibiotics growth promoters group. 0.5% of Bifidobacterium spp. supplementation to the diet of laying hens is beneficial for increasing feed efficiency and improving feed conversion ratio. The practical and theoretical significance of the results is that Bifidobacterium spp. can be used to improve production performance in laying hens.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


2020 ◽  
Vol 17 ◽  
pp. 00103
Author(s):  
Oleg Fomenko ◽  
Evgeny Mikhailov ◽  
Nadezhda Pasko ◽  
Svetlana Grin ◽  
Andrey Koshchaev ◽  
...  

The emergence of antibiotic-resistant bacteria is considered a serious problem. The resistance of bacteria against antimicrobial substances becomes important in the repair systems for damage to DNA and RNA molecules. The role of the antioxidant system in the development of bacterial resistance against antibiotics is not yet practically studied. The article studied the expression regulation of the genes of antioxidant enzymes and enzymes involved in the genetic information in E. coli cells with the antibiotic resistance against apramycin and cefatoxime. The study was conducted on bacterial cells resistant against these two antibiotics. The genes blaOXA-1, blaSHV, blaTEM, mdtK, aadA1, aadA2, sat, strA, blaCTX, blaPER-2, tnpA, tnpR, intC1 and intC1c were identified in bacterial cell case. This indicates the presence of plasmids in bacteria with these genes, which provide bacterial resistance to apramycin and cefatoxime. It was established that during the formation of cefotaxime resistance, there was a sharp increase in the expression of the Cu, Zn superoxide dismutase gene: in comparison with the control group, the representation of its transcripts increased 141.04 times for cefotoxime and 155.42 times for apramycin. It has been established that during the formation of resistance to the studied antibiotics in E. coli, an increase in the expression of the end4 and end3 genes is observed. There is tendency toward an increase in the number of transcripts of the pol3E gene observed in the formation of resistance against cefotaxime and apromycin.


2015 ◽  
Vol 2 (2) ◽  
pp. 116 ◽  
Author(s):  
Lisbeth Teresa Castro Gutierrez ◽  
Maria Ines Torres Caycedo ◽  
Luz M Aribel Castañeda Orduz ◽  
Diana Paola López ◽  
Carlos Fernando Prada Quiroga

Introducción: La resistencia bacteriana de los bacilos Gram negativos tiene un importante impacto económico y social en salud pública. Ha incrementado la morbilidad y la mortalidad en los últimos años, conllevando incremento de costos en salud; es un hecho significativo que orienta la implementación de acciones de prevención y estudio, mediante la identificación de los perfiles regionales como estrategia de vigilancia y contención de la resistencia. Objetivo: Caracterizar fenotípicamente la resistencia en cepas de bacilos Gram negativos aislados de infecciones, en un centro hospitalario de segundo nivel en el departamento de Boyacá, Colombia. Métodos: Se hizo un estudio descriptivo de corte transversal. La identificación bacteriana y las pruebas de sensibilidad se determinaron mediante el método automatizado VITEK®. Los fenotipos de resistencia a β-lactamasas de espectro extendido y carbapenemasas, se confirmaron siguiendo la metodología del Clinical and Laboratory Standards Institute (CLSI). Resultados: Se procesaron 458 cultivos durante cuatro meses, de los cuales 298 fueron negativos y 160 mostraron aislamientos bacterianos positivos; 127 eran procedentes de urocultivo. El patógeno prevalente fue Escherichia coli. De las cepas de estudio, se confirmó el fenotipo β-lactamasa en 11 aislamientos y uno para el fenotipo β-lactamasa/carbapenemasa. Conclusiones: Los hallazgos del presente estudio evidencian que E. coli es el microorganismo predominante a partir de los aislamientos que presentan un fenotipo multirresistente. La identificación de este tipo de cepas bacterianas, que son una amenaza en el ambiente hospitalario y el comunitario, amerita un cambio en las estrategias de contención de la multirresistencia; igualmente, los resultados identifican el panorama epidemiológico regional. Palabras clave: farmacorresistencia bacteriana, infecciones bacterianas, betalactamasas, salud pública. 


Sign in / Sign up

Export Citation Format

Share Document