scholarly journals Physical and Microstructural Characteristics of Kefir Made of Milk and Colostrum

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Triana Setyawardani ◽  
Juni Sumarmono ◽  
Kusuma Widayaka

This research set out to compare the physical and microstructural characteristics of kefir made of milk, colostrum, and milk-colostrum mixes at various proportions. Kefir was made by adding kefir grains to 100% milk (P0), 80% milk + 20% colostrum (P1), 60% milk + 40% colostrum (P3), 40% milk + 60% colostrum (P4), 80% milk + 20% colostrum (P5), and 100% colostrum (P6). Fermentation was allowed under room temperature for 24 hours. The characteristics observed were color values, viscosity, pH, water holding capacity (WHC), syneresis, and microstructure. The result showed that the color of kefir (L* value, lightness); (b* value, yellow-blue), (a*, red-green), and whiteness index (WI) was significantly affected by raw materials. The viscosity of kefir was also affected by the raw materials (p<0.05), in which the kefir made from a mix of 80% milk and 20% colostrum showed the highest viscosity (1524.20 m.Pa.S). However, other characteristics such as pH, WHC, and syneresis were not significantly affected by raw materials. The microstructure of kefir made from 20 to 40% colostrum showed a string and compact protein tissues, while that made from 80 to 100% colostrum showed a clumping gel and concentration dominated by protein and fat tissues.  This study demonstrated that milk kefir produced from milk-colostrum mixes posses a yellowish color (b*), low whitenes index, negative a* value, low lightness, whereas kefir made from 100% colostrum showed slightly greenish with low lightness level. Kefir with highest viscosity was produced from combined 80% milk and 20% colostrum. The microstructure of kefir produced from mixes with 40% and 60% colostrum showed a strong, tight, and compact microstructure of protein tissues.

2021 ◽  
Vol 869 (1) ◽  
pp. 012007
Author(s):  
A Yuslan ◽  
N Nasir ◽  
H Suhaimi ◽  
A Arshad ◽  
N W Rasdi

Abstract Copepods with a wide range of sizes, species, and nutritional compositions are preferred as live food for rearing of Betta splendens larvae. This research focuses on evaluating the efficiency of copepod enrichment diets in improving the coloration and feeding rate of B. splendens. Copepod were enriched with Chlorella sp. (T1), capsicum (T2), mixed vegetable (carrot + spinach), (T3), yeast (T4) and rice bran (T5) in 24 hours prior the feeding tests. As a result, proximate analysis of enriched-copepods showed that T1 (70.88±0.41) has highest protein content and T5 (22.01±0.59) has the highest lipid content. The specific growth rate and survival rate of B. splendens was highest in the treatment T1 (2.56±0.07%; 91.11±1.92%) and followed closely by T3 (2.49±0.51%; 85.55±8.39%). Feeding rate, T3 (70.08±3.88%) presented highest rate compared to other treatments. The different enrichment diets used were significantly impact the coloration test on body of L* value (P=0.001, P<0.05), T3 (66.11±3.60) appeared darker in color in contrast to others. As for a* value, the coloration was not impacted with the use of different enrichment on copepods (P=0.158, P>0.05) was detected for T1 (2.84±0.73) that gave a redder shade than other treatments did. T3 (2.40±0.30) exerted a more yellowish shade than the rest for b* value with a significant difference (P=0.015, P<0.05). The current study demonstrates that, rice bran, capsicum and mixed vegetable enrichment (carrot and spinach) have the potential to be an effective means of increasing B. splendens coloring and feeding rate. This potential diet can be further used as a substitution to artificial foods in producing sustainable culture of ornamental fish in the aquaculture industry.


2021 ◽  
pp. 232020682110443
Author(s):  
Murat Eskitaşçıoğlu ◽  
Mehmet Şerif Akdeniz ◽  
Beyza Ünalan Değirmenci

Aims: To evaluate the color changes that occur after accelerated aging in feldspathic ceramic crowns cemented with three different dual-cured resin cements. Materials and Methods: For each of the A2-colored RelyX U200, G-CEM LinkForce, and Panavia V5 cement groups, 45 dies from A2-colored zirconia blocks and 45 crowns from CEREC blocks were prepared. Color measurements after 24 h of cementation (T1) and after cycles of aging of 1750 (T2), 3500 (T3), and 7000 (T4) in the thermal cycle device were made using SpectroShade Micro device. The coordinates of the color were used L*, a*, and b* as base and the color change was calculated with ∆ E00 in determining the color. One-way analysis of variance test was used to compare the times in terms of ∆ L*, ∆ a*, and ∆ b* values. Results: It was found that ∆ L* value decreased significantly in period of the T2, T3, and T4 times compared to T1 in all groups ( P < .05), whereas the change between period of T2, T3, and T4 times was not significant ( P > .05). The ∆ a* value increased significantly in the period of T3 and T4 times compared to T1 in the only G-CEM LinkForce group, whereas the ∆ b* value increased significantly in the period of T4 time compared to T1 in the only Panavia V5 group. The changes in ∆ E00 values, which were observed in all period of times, were found to be between 0.43 and 1.04, 0.43 and 1.43, and 0.40 and 0.97 in RelyX U200, G-CEM LinkForce, and Panavia V5 groups, respectively. Conclusion: After accelerated aging, it was found that the color of all cements became darker and the G-CEM LinkForce group turned red and the Panavia V5 group turned yellow. However, it was found that the color changes that occurred were within clinically acceptable visible levels.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1748
Author(s):  
Maria-Ioana Socaciu ◽  
Melinda Fogarasi ◽  
Cristina Anamaria Semeniuc ◽  
Sonia Ancuţa Socaci ◽  
Mihaela Ancuţa Rotar ◽  
...  

The effects of heat treatment and the addition of tarragon essential oil on physical and mechanical properties of films prepared with 5% whey protein isolate (WPI) and 5% glycerol were investigated in this study. Heat treatment of the film-forming solution caused increases in thickness, moisture content, swelling degree, water vapor permeability (WVP), b*-value, ΔE*-value, transmittance values in the 200–300-nm region, transparency, and puncture resistance of the film, but decreases in water solubility, L*-value, a*-value, transmittance values in the 350–800-nm region, and puncture deformation. When incorporated with tarragon essential oil, heat-treated films have the potential to be used as antimicrobial food packaging. The addition of tarragon essential oil in film-forming solution caused increases in moisture content, solubility in water, WVP, a*-value, b*-value, ΔE*-value, and transparency of the film; decreases in transmittance values in the range of 600–800 nm; and variations in swelling degree, L*-value, transmittance values in the range of 300–550 nm, puncture resistance, and puncture deformation. Nevertheless, different tendencies were noticed in UNT (untreated) and HT (heat-treated) films with regards to transparency, light transmittance, puncture resistance, and puncture deformation. Based on these findings, HT films show improved physical and mechanical properties and, therefore, are more suitable for food-packaging applications.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 139 ◽  
Author(s):  
Karen Alissa ◽  
Yu-Chi Hung ◽  
Chih Yao Hou ◽  
GiGi Chin Wen Lim ◽  
Jhih-Ying Ciou

Avocado (Persea Americana Mill.) generates byproducts, especially the avocado seeds. Hence, the aim of this study was to investigate the potential utilization of avocado seed as a very important, high phenolic content, climacteric fruit with unique characteristics and high nutritional properties. As such, theantioxidative test is conducted, then spray drying is used to produce avocado seed powder. The objective of this study was to develop an avocado seed powder using the spray drying technique by investigating the solution stability with different avocado seed extract concentrations, and to determine the physical properties of spray dried avocado powder that consists of powder yield, moisture, water activity, solubility, and color. The avocado seed extract was mixed with maltodextrin and water and homogenized for 10 min at 8000 rpm. The avocado seed solution was then spray dried with different inlet temperatures and feed flow rates. The spray dried avocado seed powder was analyzed for its yield, moisture content, water activity, solubility, and color. It was reported that the solution with the least avocado extract concentration (10 g) had the best stability in terms of presence of solute particles and color. The avocado seed powder obtained from this experiment had yield ranges from 24.46–35.47%, moisture content ranges from 7.18–7.96%, water activity ranges from 0.27–0.34, solubility ranges from 55.50–79.67 seconds, L* value ranges from 38.38–41.05, a* value ranges from 6.20–7.25, and b* value ranges from 13.33–15.17. In addition, increasing inlet temperature resulted in an increase in powder yield, solubility, a* value, and b*value, as well as a decrease in moisture, water activity, and L* value. Meanwhile, increasing the feed flow rate resulted in an increase in powder yield, moisture, water activity, and all L*, a*, b* values, as well as a decrease in solubility. In conclusion, spray drying technology is able to develop avocado seed powder.


2012 ◽  
Vol 35 (1) ◽  
pp. 50 ◽  
Author(s):  
Rizky Arizona ◽  
Edi Suryanto ◽  
Yuny Erwanto

<p>The objective of the experiment study was to determine the effect of canary shell liquid smoke on the chemical, physical and sensory qualities of beef stored at room temperature. Beef samples were dipped in liquid smoke solution<br />with the concentration of 0, 4, 8, and 12% (v/v) during 15 minutes and then stored for 0,2, and 4 days at room temperature. Each treatment was carried out three times and the variables measured were water, phenol and acid<br />content, pH, water-holding capacity, cooking loss and sensory properties of samples. Data on chemical and physical qualities were analyzed using analysis of variance (Completely Randomized Design/CRD) with factorial 4x3. The<br />sensory properties were analyzed by a non parametric h-test. The results showed that liquid smoke concentration up to 12% significantly (p&lt;0.05) increased water holding capacity and cooking loss of samples. Storage time up to four days<br />significantly (p&lt;0.05) increased its pH value, cooking loss, whereas water-holding capacity was decreased. The meat sensory test showed that flavor and slimming rate were affected significantly (p&lt;0.05) by liquid smoke. There was no<br />interaction between liquid smoke concentration and storage time. In conclusion, the addition of liquid smoke up to 12% increased phenol and acid content, while the physical quality of meat has decreased. Quality of beef stored up to 4 days<br />showed a decreased of quality such as pH, water-holding capacity, cooking loss, and sensory meat.</p><p><br />(Keywords: Canary shell, Liquid smoke, Storage time, Quality of beef)<br /><br /></p>


2016 ◽  
Vol 78 (6-6) ◽  
Author(s):  
Noriham, A. ◽  
Muhammad Ariffaizuddin, R. ◽  
Noorlaila, A. ◽  
Faris Zakry, A. N

Processed meat products are particularly unhealthy because of high fat, preservative and salt content. This study is carried out with the aim to determine the physicochemical and sensorial properties of sausage incorporated with okara flour. There were four different sausage formulations labelled as Control (0% okara flour, 100% beef), F1 (10% okara flour, 90% beef), F2 (20% okara flour, 80% beef), F3 (30% okara flour, 70% beef) and F4 (40% okara flour, 60% beef). Formulations were subjected to proximate, water holding capacity, color, texture and sensorial analysis. Results for proximate composition, revealed that carbohydrate, ash and fiber content increased while moisture, fat and protein content decreased as the okara flour addition were increased. Water holding capacity (WHC) was found to increase as the incorporation of okara flour increased. In term of color analysis, increased in okara flour content in sausage significantly increased lightness (L*) and yellowness (b*) values while decreasing in redness (a*) value. As for textural properties, the values for hardness, cohesiveness, springiness and chewiness were decreased as the incorporation of okara flour increased. Sensorial results showed that F4 had the lowest overall acceptability due to its poor texture and unacceptable taste. Hence this study concludes that okara flour has the potential to replace meat at certain levels in sausage formulations which is not more than 20% okara flour.


2006 ◽  
Vol 69 (8) ◽  
pp. 1913-1919 ◽  
Author(s):  
D. M. ANANG ◽  
G. RUSUL ◽  
SON RADU ◽  
JAMILAH BAKAR ◽  
L. R. BEUCHAT

Oxalic acid was evaluated as a treatment for reducing populations of naturally occurring microorganisms on raw chicken. Raw chicken breasts were dipped in solutions of oxalic acid (0, 0.5, 1.0, 1.5, and 2.0%, wt/vol) for 10, 20, and 30 min, individually packed in oxygen-permeable polyethylene bags, and stored at 4°C. Total plate counts of aerobic bacteria and populations of Pseudomonas spp. and Enterobacteriaceae on breasts were determined before treatment and after storage for 1, 3, 7, 10, and 14 days. The pH and Hunter L, a, and b values of the breast surface were measured. Total plate counts were ca. 1.5 and 4.0 log CFU/g higher on untreated chicken breasts after storage for 7 and 14 days, respectively, than on breasts treated with 0.5% oxalic acid, regardless of dip time. Differences in counts on chicken breasts treated with water and 1.0 to 2.0% of oxalic acid were greater. Populations of Pseudomonas spp. on chicken breasts treated with 0.5 to 2.0% oxalic acid and stored at 4°C for 1 day were less than 2 log CFU/g (detection limit), compared with 5.14 log CFU/g on untreated breasts. Pseudomonas grew on chicken breasts treated with 0.5% oxalic acid to reach counts not exceeding 3.88 log CFU/g after storage for 14 days. Counts on untreated chicken exceeded 8.83 log CFU/g at 14 days. Treatment with oxalic acid caused similar reductions in Enterobacteriaceae counts. Kocuria rhizophila was the predominant bacterium isolated from treated chicken. Other common bacteria included Escherichia coli and Empedobacter brevis. Treatment with oxalic acid caused a slight darkening in color (decreased Hunter L value), retention of redness (increased Hunter a value), and increase in yellowness (increased Hunter b value). Oxalic acid has potential for use as a sanitizer to reduce populations of spoilage microorganisms naturally occurring on raw chicken, thereby extending chicken shelf life.


Marinade ◽  
2021 ◽  
Vol 4 (01) ◽  
pp. 51-62
Author(s):  
Habsah Agusnia ◽  
Kiki Fatmawati ◽  
Made Suhandana

Phylum molusca is a group of animals that are soft-bodied and have no spine (invertebrates). One of the phylum molusca is a class of Bivalvia that is generally in the form of lateral symmetry, a type of bivalvia that is often found in the water of Riau Islands is Lokan shells (Geloina erosa) and Darah shells (Anadara granosa) that live in tidal areas. The purpose of this study is to find out if the addition of water ice cubes resulting from the extraction of seaweed Echeuma Cottonii is effective for lokan shells and blood shells. Based on the results of the study obtained for the meat rendment of each shell is 85.39% in lokan shells and 84.27% in darah shells. Organoleptic results showed a more effective treatment of shellfish treatment with the addition of regular ice cubes, Water Holding Capacity (WHC) for the treatment of water ice cube extract binding or absorbing more water than regular ice cube treatment. The second pH of shellfish from three treatments had a value below 7, the lowest acidic pH obtained treatment with seaweed ice cubes.


2021 ◽  
Vol 12 (2) ◽  
pp. 103-108
Author(s):  
Samiul Kaiser ◽  
Mohammad Salim Kaiser

The heating effect on the stability and visual colour of enamel paint on cement plaster is evaluated through light intensity ratio of three primary colours (RGB). The painted cement plaster is isochronally heated in an electric resistance furnace at different temperatures for one hour. The investigation of optical images reveals that the original colour of the paint layer on the plaster samples remains more or less unchanged up to heating at 100°C. However, thermal degradation of the samples becomes evident in colour when they are heated beyond 200°C and at 350°C the colour becomes already burned. The microstructural images of the samples at room temperature show fine and uniform grains. But at higher heating condition the microstructure of the colour sample is characterized by coarsening grain. The colour of the heated samples are then studied through tristimulus colour ‘L*’, ‘a*’ ‘b*’ and ‘E*’ values which were analyzed and evaluated in MATLAB software. The results show that after 200°C the hunter ‘L*’ value starts to decrease greatly up to 250°C. The hunter ‘a*’ value shows an increasing trend up to 100°C and then begins to decrease until 200°C. After 200°C the same increasing character is showed till 300°C. The change of hunter ‘b*’ value remains insignificant up to 100°C and shows decreasing trend between 100°C-250°C range and an increase after 250°C up to 300°C. It is graphically shown that the proportion of all three colours decreases with the increasing temparature. The overall change of colour ‘E*’ occurs with increasing heating temperature due to moisture releasing, chemical changes and thermal degradation simulteneously. The thickness of enamel paint layer comply the above degradation by showing the nature of decresing trend. Journal of Engineering Science 12(2), 2021, 103-108


Author(s):  
Nur Eliza Badrul Hisham ◽  
Nor Hanuni Ramli

Rice husk ash (RHA), palm oil mill effluent (POME) sludge and decanter cake can be utilized together in compost production to minimize the environmental pollution. This study aims to evaluate the role of different composition of RHA in enhancing the physicochemical properties of palm oil-based compost. The composts were prepared by mixing different composition of RHA, in the range of 0% to 30%, with 1:1 (wt/wt) weight ratio of POME sludge and decanter cake. The moisture content, water holding capacity, pH, nitrogen (N), phosphorus (P), potassium (K), silica (Si) contents, and C:N ratio of raw materials were analyzed by using CHNS and WDXRF analyzers. The composting process was conducted in compost containers for 60 days, in which the temperature and pH of the composts were monitored daily. The finished composts were analyzed for physicochemical properties as same as raw materials. For physical properties of finished composts, RHA30 had the highest moisture content and water holding capacity which was 1.9 to 23.8% (wt/wt) and 4.2 to 26.8% higher compared to other finished composts, respectively. For chemical properties, the highest N and P contents were recorded by control compost. However, for K and Si content, the elements were found to be higher in RHA10 and RHA30, respectively, compared to other finished composts. Overall, RHA, POME sludge and decanter cake combination in compost production can create a well-balanced condition for the compost to perform effectively as an organic fertilizer. The addition of 5% to 10% RHA in compost formulation made from palm oil mill wastes is suggested to achieve the desirable condition.


Sign in / Sign up

Export Citation Format

Share Document