First Successful Controlled Dumpflood in Deepwater Gulf of Mexico Results in Promising Incremental Rate and Recovery

2021 ◽  
Author(s):  
Bilal A. Hakim ◽  
Brandon Thibodeaux ◽  
Chris Brinkman ◽  
Joe Gomes ◽  
Kevin Smith ◽  
...  

Abstract Waterflooding in deepwater reservoirs typically involves injecting seawater or produced water from the surface via pumps into injection wells. This technique is often cost-prohibitive for many reservoirs and poses significant mechanical/operational risks. This paper discusses how one Gulf of Mexico (GOM) operator overcame all these challenges using smart well technology to implement the first controlled dumpflood in deepwater GOM and boosted the injection rate, reservoir pressure, and recovery from a reservoir at a depth of 20,000 ft. In a typical dumpflood project, uncontrolled water production from the aquifer and subsequent injection into the target zone occurs downhole within the same wellbore. Therefore, typical surface and downhole complexities associated with conventional waterflood projects can be avoided. In this first deepwater GOM controlled dumpflood well, the controlled water flow (≥20,000 bbl/d) is directed from the source aquifer to the target oil zone via inflow control valves (ICV). The ICV, downhole permanent pressure gauges, and the downhole flowmeter provide complete surveillance and control of the injection operation to achieve reservoir management and optimize the waterflood objectives. A world-class Pliocene oil reservoir in the deepwater GOM underwent significant pressure depletion due to a weak water-drive mechanism. Extensive subsurface studies and modeling suggested great rock quality and reservoir connectivity, favorable oil-water mobility ratios, and significant upside potential making this reservoir a perfect candidate for waterflooding. Given topsides facility space constraints, a topsides injection was ruled out. Seawater injection via subsea pumping was deemed risky and marginally economical given the high cost and low commodity prices. The asset team then brainstormed ways to minimize the cost and overcome the associated risks and challenges. The asset team envisioned a dumpflood scenario would overcome all the challenges, but a dumpflood had not previously been implemented in the deepwater GOM. From a technical standpoint, all the known risks were identified and addressed, and a low risk factor was determined for this project. After a complex well completion job, the injection rate was ramped-up to ≥20,000 bwpd water via the ICV. An immediate uptick in reservoir pressure and production rate was observed in the producer well 3,000 ft away. Continuous injection has resulted in reservoir pressure and flowrate increases by at least 1,000 psi and 4,000 bopd, respectively, consistent with reservoir modeling estimates. The operator was successful in implementing an existing technology in a unique way in the deepwater environment. A naturally occurring water source at a depth of 19,000 ft was efficiently harvested to increase recovery from a reservoir at a fraction of the cost of a conventional deepwater waterflood project. Great interdisciplinary collaboration and forward thinking enabled the success of this unique project, opening up tremendous possibilities to increase recovery from other fields where a conventional waterflood may not be justifiable.

2021 ◽  
Author(s):  
Fuziana Tusimin ◽  
Latief Riyanto ◽  
Nurul Aula A'akif Fadzil ◽  
Nur Syazana Sadan ◽  
Asba Mazidah Abu Bakar ◽  
...  

Abstract Properly distributing injected fluid to provide injection conformance and reservoir pressure support into the respective zones of interest in mature fields can be challenging. This challenge, with injection fluid distribution, is typically encountered in fields with high contrast in permeability, reservoir pressure, and injectivity indexes among individual zones. Deployment of intelligent completion (IC) technology to address this challenge has rapidly increased, especially in multi-zone water injector wells, due to its capabilities for real-time reservoir monitoring and control of the fluid injected into multiple zones without requiring well interventions. This paper presents a case study of successful installation of IC technology in two water injector wells in Field B offshore Sarawak. The main objective of the IC implementation is to provide an efficient water-injection method for pressure support to the nearby oil producers and counteract the gas expansion through water injection at the flank area. Water injection implementation using the IC approach can further develop the oil rims and improve oil recovery in the particular reservoir to extend the field's production life. The custom tailored inflow control valve (ICV) design is robust enough to provide control of desired zonal injection rates. Each well was installed with two sets of ICVs to control the injection rate for each dedicated zone as well as a real-time permanent downhole gauge (PDG) to monitor the pressure drop across the ICV for zonal rates allocation / analysis. Apart from conceptual and detailed engineering study of the applied IC technology, proper downhole equipment selection and integration with surface facilities are also crucial to ensure successful implementation of the IC system as a holistic solution to achieve the injection objective. Post well completion installation, a water injectivity test was performed in both the selective and commingle injection modes. During selective injection testing, different positions of the ICV were manipulated and the water injection rate was monitored. This testing approach was performed for each ICV in the well. Post selective injection testing, commingle testing was conducted at the base 9,000 bwpd and maximum injection target of 18,000 bwpd, in which the testing was successfully executed to achieve the maximum well target injection rate. This paper shall discuss the reservoir management strategy through deployment of the water injectors, conceptual well completion design, and multi-zone injectivity requirements. Details such as ICV design using pre-drill and post-drill information, final well completion strategy, pre-installation preparation, installation optimization, execution of the IC deployment, injectivity test procedure, and results are discussed as well.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2018 ◽  
Vol 852 ◽  
pp. 398-421
Author(s):  
Helena L. Kelly ◽  
Simon A. Mathias

An important attraction of saline formations for CO2 storage is that their high salinity renders their associated brine unlikely to be identified as a potential water resource in the future. However, high salinity can lead to dissolved salt precipitating around injection wells, resulting in loss of injectivity and well deterioration. Earlier numerical simulations have revealed that salt precipitation becomes more problematic at lower injection rates. This article presents a new similarity solution, which is used to study the relationship between capillary pressure and salt precipitation around CO2 injection wells in saline formations. Mathematical analysis reveals that the process is strongly controlled by a dimensionless capillary number, which represents the ratio of the CO2 injection rate to the product of the CO2 mobility and air-entry pressure of the porous medium. Low injection rates lead to low capillary numbers, which in turn are found to lead to large volume fractions of precipitated salt around the injection well. For one example studied, reducing the CO2 injection rate by 94 % led to a tenfold increase in the volume fraction of precipitated salt around the injection well.


2021 ◽  
Author(s):  
Alberto Casero ◽  
Ahmed M. Gomaa

Abstract The success of any matrix treatment depends upon the complete coverage of all zones. Consequently, the selection of the diversion technology is critical for treatment success. While various types of diverting agents are commercially available, the proper selection of optimal diverter depends on many factors, including well completion and history, compatibility with reservoir and treatment fluids, treatment objectives, operational constraints, and safety and environment considerations. The study will cover five major types of non-mechanical diversion technologies considered as potential solutions for offshore deepwater oil reservoirs: dynamic diversion, relative permeability modifiers (RPM), viscoelastic surfactants (VES), particulate diversion, and perforation diversion. All of them, but a dynamic diversion, are based on different chemicals or products to be added to the injected treatment fluid, and occasionally some can be complementary to each other. Given the offshore and deepwater settings, mechanical diversion techniques were not covered in the study, aiming to find a solution that would achieve acceptable diversion while minimizing operational effort, which would enable riser-less intervention and the use of light intervention techniques. This study was driven by the need to effectively stimulate a 500ft of a cased and perforated interval with a permeability of 500 md, and injection rate limited to 16 bpm due to completion limitations. The sandstone formation, with static in situ temperature of 270F, was far beyond the applicability of dynamic diversion and, to achieve the desired full coverage for the planned scale inhibition treatment required and combination with another diverter system was needed. The process applied included compatibility tests, regained permeability tests, and test well trials. Depending on the specific diversion product analyzed the testing procedures were adapted to obtain the information to properly guide to the optimal solution.


2021 ◽  
pp. 48-52
Author(s):  
F.G. Hasanov ◽  
◽  
A.M. Samedov ◽  
S.B. Bairamov ◽  
◽  
...  

Produced water isolated from the oil in oil-gas production is pumped into the injection wells after cleaning from salt deposits and mechanical impurities. In the mixture of high-mineralised produced water, salt deposits making the technological equipment and pipes useless while gathering and transportation, reduce the permeability of injection wells. Carried out experimental researches show that for each ton it is necessary to pump 100 g of KD-7 inhibitor to prevent salt deposition in the mixture of produced water. Technological processes should be performed in a closed system, and the territories contaminated with oil and produced water cleaned and equipped well.


2021 ◽  
Author(s):  
Jun Wu ◽  
Iraj Ershaghi

Abstract Castillo1 suggested the use of the G-Function plot based on the work of Nolte2. It has been a standard practice in the fracturing community to estimate the fracture closing pressure from a tangent to the G*dp/dg plot. In this analysis technique, the assumption is that a fracture has already developed under the high-pressure fracturing fluid. Then when the pumping is relaxed, one can estimate the fracture closing pressure. In many California waterfloods, the issue of maximum allowable injection gradient has been debated. Various solutions have been proposed to calculate a safe injection gradient. One method that has been promoted is the application of the G-function plot. In this paper, we maintain that this application can be misleading using the prescribed cartesian G function plots. We present the results of an extensive research study for analyzing pressure fall-off data using the G-Plot function. We studied a reappraisal of the G function plot using waterflood conditions where no prior fractures had formed, and no fracture closing pressure was meaningful or applicable. We show from analysis of generated data, using both numerical reservoir modeling and analytical derivations for a radial flow system, that fall-off tests analyzed using the cartesian G function can generate false indications of fracture closing where in fact, the entire injection has been based on radial flow homogeneous injection systems. We also studied systems with a pre-existing fracture before injection. We show that if such a reservoir system is subjected to injection and fall-off tests, again, one may compute a false indication of the irrelevant fracture closure pressure. We discuss how the cartesian scale used for the G function plot can be misleading for the analysis of fall-off test data.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Zhaoxu Mi ◽  
Fugang Wang ◽  
Zhijie Yang ◽  
Xufeng Li ◽  
Yujie Diao ◽  
...  

CO2 geological storage in deep saline aquifers is an effective way to reduce CO2 emissions. The injection of CO2 inevitably causes a significant pressure increase in reservoirs. When there exist faults which cut through a deep reservoir and shallow aquifer system, there is a risk of the shallow aquifer being impacted by the changes in reservoir hydrodynamic fields. In this paper, a radial model and a 3D model are established by TOUGH2-ECO2N for the reservoir system in the CO2 geological storage demonstration site in the Junggar Basin to analyze the impact of the CO2 injection on the deep reservoir pressure field and the possible influence on the surrounding shallow groundwater sources. According to the results, the influence of CO2 injection on the reservoir pressure field in different periods and different numbers of well is analyzed. The result shows that the number of injection wells has a significant impact on the reservoir pressure field changes. The greater the number of injection wells is, the greater the pressure field changes. However, after the cessation of CO2 injection, the number of injection wells has little impact on the reservoir pressure recovery time. Under the geological conditions of the site and the constant injection pressure, although the CO2 injection has a significant influence on the pressure field in the deep reservoir, the impact on the shallow groundwater source area is minimal and can be neglected and the existing shallow groundwater sources are safe in the given project scenarios.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 327-342 ◽  
Author(s):  
Andrea Luca Tasca ◽  
Farnaz Ghajeri ◽  
Ashleigh J Fletcher

Very few studies have investigated the adsorption performance of hydrophobic and hydrophilic silicas with dissolved organics in water, which is a required final step during produced water treatment. The cost of functionalization also hinders the use of hydrophobic materials as sorbents. Novel hydrophilic silicas, prepared at low temperature and ambient pressure, were characterised by SEM, FTIR and BET analysis, and studied for the adsorption of aqueous phase organic compounds at concentrations below their solubility limits. Adsorption capacities were found to be up to 264 mg/g for benzene and 78.8 mg/g for toluene. Direct comparison is made with the analogous hydrophobic version of one of the silica materials, demonstrating comparable uptakes for benzene concentrations lower than 50 mg/L. This finding supports the hypothesis that, at very low aqueous phase organic concentrations, hydrophobicization has no discernible effect on access of the pollutants to the internal porosity of the material.


Sign in / Sign up

Export Citation Format

Share Document