scholarly journals Identification of Two Novel Alternative Splicing-related Genes in the Cervical Cancer Immune Microenvironment

Author(s):  
Dan Sun ◽  
Zhifu Zhi ◽  
Aiqian Zhang ◽  
Bingsi Gao ◽  
Lingxiao Zou ◽  
...  

Abstract Background: Cervical cancer (CC) is one of the most common malignant tumors of the female reproductive system. The tumor immunotherapy showed the remarkable effect. Associated alternative splicing (AS)-event signatures provide potential therapeutic targets and improved strategies for new drug development in CC management.Methods: Clinical information and messenger RNA (mRNA) expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Hub genes were extracted from the 7 AS-related genes for correlation analysis with clinical parameters and tumor-immune microenvironment. The relationship between the risk score and the 6 most important checkpoint genes was investigated. Finally, we estimated the Stroma and Immune cells using the Expression data (ESTIMATE) algorithm.Results: It was revealed that T cells CD8, T cells regulatory (Tregs), T cells CD4 memory activated, neutrophils, mast cells resting, mast cells activated, and macrophages M0 had a significant difference between the low- and high risk-score groups. The genes SHF and FOXRED2 were extracted as hub genes. High expression of SHF (P < 0.002) and low expression of FOXRED2 (P < 0.001) were associated with poor prognosis..Immune checkpoint genes IDO1, PDCD1, and HAVCR2, were negatively correlated with risk-score.Conclusions: We used bioinformatics to assess the heterogeneity of tumor-infiltrating immune cells in CESC and discovered out 2 hub genes, SHF and FOXRED2, from the AS prognostic model. The immune checkpoint genes IDO1, PDCD1, and HAVCR2, showed negative correlations with risk-score. The outcomes were significant for studying tumor progression's immune-related mechanisms and exploring novel prognostic predictors and precise therapy methods.

2021 ◽  
Vol 11 ◽  
Author(s):  
Hong Liu ◽  
Ruiyi Xu ◽  
Chun Gao ◽  
Tong Zhu ◽  
Liting Liu ◽  
...  

Cervical squamous cell carcinoma (CSCC) is the major pathological type of cervical cancer (CC), the second most prevalent reproductive system malignant tumor threatening the health of women worldwide. The prognosis of CSCC patients is largely affected by the tumor immune microenvironment (TIME); however, the biomarker landscape related to the immune microenvironment of CSCC and patient prognosis is less characterized. Here, we analyzed RNA-seq data of CSCC patients from The Cancer Genome Atlas (TCGA) database by dividing it into high- and low-immune infiltration groups with the MCP-counter and ESTIMATE R packages. After combining weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis, we found that PLA2G2D, a metabolism-associated gene, is the top gene positively associated with immune infiltration and patient survival. This finding was validated using data from The Cancer Genome Characterization Initiative (CGCI) database and further confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, multiplex immunohistochemistry (mIHC) was performed to confirm the differential infiltration of immune cells between PLA2G2D-high and PLA2G2D-low tumors at the protein level. Our results demonstrated that PLA2G2D expression was significantly correlated with the infiltration of immune cells, especially T cells and macrophages. More importantly, PLA2G2D-high tumors also exhibited higher infiltration of CD8+ T cells inside the tumor region than PLA2G2D-low tumors. In addition, PLA2G2D expression was found to be positively correlated with the expression of multiple immune checkpoint genes (ICPs). Moreover, based on other immunotherapy cohort data, PLA2G2D high expression is correlated with increased cytotoxicity and favorable response to immune checkpoint blockade (ICB) therapy. Hence, PLA2G2D could be a novel potential biomarker for immune cell infiltration, patient survival, and the response to ICB therapy in CSCC and may represent a promising target for the treatment of CSCC patients.


Author(s):  
Wenjuan Kang ◽  
Jiajian Hu ◽  
Qiang Zhao ◽  
Fengju Song

Neuroblastoma is one of the malignant solid tumors with the highest mortality in childhood. Targeted immunotherapy still cannot achieve satisfactory results due to heterogeneity and tolerance. Exploring markers related to prognosis and evaluating the immune microenvironment remain the major obstacles. Herein, we constructed an autophagy-related gene (ATG) risk model by multivariate Cox regression and least absolute shrinkage and selection operator regression, and identified four prognostic ATGs (BIRC5, GRID2, HK2, and RNASEL) in the training cohort, then verified the signature in the internal and external validation cohorts. BIRC5 and HK2 showed higher expression in MYCN amplified cell lines and tumor tissues consistently, whereas GRID2 and RNASEL showed the opposite trends. The correlation between the signature and clinicopathological parameters was further analyzed and showing consistency. A prognostic nomogram using risk score, International Neuroblastoma Staging System stage, age, and MYCN status was built subsequently, and the area under curves, net reclassification improvement, and integrated discrimination improvement showed more satisfactory prognostic predicting performance. The ATG prognostic signature itself can significantly divide patients with neuroblastoma into high- and low-risk groups; differentially expressed genes between the two groups were enriched in autophagy-related behaviors and immune cell reactions in gene set enrichment analysis (false discovery rate q -value &lt; 0.05). Furthermore, we evaluated the relationship of the signature risk score with immune cell infiltration and the cancer-immunity cycle. The low-risk group was characterized by more abundant expression of chemokines and higher immune checkpoints (PDL1, PD1, CTLA-4, and IDO1). The risk score was significantly correlated with the proportions of CD8+ T cells, CD4+ memory resting T cells, follicular helper T cells, memory B cells, plasma cells, and M2 macrophages in tumor tissues. In conclusion, we developed and validated an autophagy-related signature that can accurately predict the prognosis, which might be meaningful to understand the immune microenvironment and guide immune checkpoint blockade.


Author(s):  
Myeong Joon Kim ◽  
Sang-Jun Ha

In the tumor immune microenvironment (TIME), tumor cells interact with various cells and operate various strategies to avoid antitumor immune responses. These immune escape strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector function via direct interaction with immune checkpoint ligands (ICLs) expressed in tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising cancer immunotherapy by reinvigorating the function of effector immune cells. Among the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the survival of human patients with cancer by restoring the function of tumor-infiltrating (TI) CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells, but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated macrophages, and myeloid cells). There is also controversy regarding the role of tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern and function of PD-1 in each cell subset is important for improving the efficacy of cancer immunotherapy. Here, we review the differential role of PD-1 expressed by various TI immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe how the blockade of PD-1 acts on TI immune cells in human patients with cancer.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruoting Lin ◽  
Conor E. Fogarty ◽  
Bowei Ma ◽  
Hejie Li ◽  
Guoying Ni ◽  
...  

Abstract Background Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. While many patients survive, a portion of PTC cases display high aggressiveness and even develop into refractory differentiated thyroid carcinoma. This may be alleviated by developing a novel model to predict the risk of recurrence. Ferroptosis is an iron-dependent form of regulated cell death (RCD) driven by lethal accumulation of lipid peroxides, is regulated by a set of genes and shows a variety of metabolic changes. To elucidate whether ferroptosis occurs in PTC, we analyse the gene expression profiles of the disease and established a new model for the correlation. Methods The thyroid carcinoma (THCA) datasets were downloaded from The Cancer Genome Atlas (TCGA), UCSC Xena and MisgDB, and included 502 tumour samples and 56 normal samples. A total of 60 ferroptosis related genes were summarised from MisgDB database. Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA) were used to analyse pathways potentially involving PTC subtypes. Single sample GSEA (ssGSEA) algorithm was used to analyse the proportion of 28 types of immune cells in the tumour immune infiltration microenvironment in THCA and the hclust algorithm was used to conduct immune typing according to the proportion of immune cells. Spearman correlation analysis was performed on the ferroptosis gene expression and the correlation between immune infiltrating cells proportion. We established the WGCNA to identify genes modules that are highly correlated with the microenvironment of immune invasion. DEseq2 algorithm was further used for differential analysis of sequencing data to analyse the functions and pathways potentially involving hub genes. GO and KEGG enrichment analysis was performed using Clusterprofiler to explore the clinical efficacy of hub genes. Univariate Cox analysis was performed for hub genes combined with clinical prognostic data, and the results was included for lasso regression and constructed the risk regression model. ROC curve and survival curve were used for evaluating the model. Univariate Cox analysis and multivariate Cox analysis were performed in combination with the clinical data of THCA and the risk score value, the clinical efficacy of the model was further evaluated. Results We identify two subtypes in PTC based on the expression of ferroptosis related genes, with the proportion of cluster 1 significantly higher than cluster 2 in ferroptosis signature genes that are positively associated. The mutations of Braf and Nras are detected as the major mutations of cluster 1 and 2, respectively. Subsequent analyses of TME immune cells infiltration indicated cluster 1 is remarkably richer than cluster 2. The risk score of THCA is in good performance evaluated by ROC curve and survival curve, in conjunction with univariate Cox analysis and multivariate Cox analysis results based on the clinical data shows that the risk score of the proposed model could be used as an independent prognostic indicator to predict the prognosis of patients with papillary thyroid cancer. Conclusions Our study finds seven crucial genes, including Ac008063.2, Apoe, Bcl3, Acap3, Alox5ap, Atxn2l and B2m, and regulation of apoptosis by parathyroid hormone-related proteins significantly associated with ferroptosis and immune cells in PTC, and we construct the risk score model which can be used as an independent prognostic index to predict the prognosis of patients with PTC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12573-e12573
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Vijayashree Murthy ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
...  

e12573 Background: In breast cancer patients, it is well known that the elevation of neutrophil lymphocyte ratio (NLR) in the blood are reported to associate with poor prognosis based on the notion that neutrophils represent pro-cancer, and lymphocytes represent anti-cancer immune cells. Tumor immune microenvironment has been demonstrated to play critical roles in the outcome of breast cancer patients. However, there is scarce evidence on the clinical relevance of intratumoral NLR in breast cancer patients. In the current study, we hypothesized that intratumoral NLR high tumors are associated with worse survival particularly in TNBC that is known to have high immune cell infiltration. Methods: A total of 1904 breast cancer patients’ data from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) and analyzed. NLR was calculated by the gene expressions of CD66b (CEACAM8) and CD8 (CD8A). NLR high and low were divided by the median. Overall Survival (OS) and Disease-Free Survival were calculated utilizing Kaplan Meier method between intratumoral NLR high and low groups. xCell algorithm was used to analyze the infiltrated immune cells within the tumor immune microenvironment as we have previously published. Results: Intratumoral NLR high group was associated with worse OS in whole, ER-positive/HER2-negative, and triple negative (TN) subtypes, in agreement with the previous studies. TN subtype alone demonstrated worse DFS of NLR high group. Surprisingly, gene set enrichment analysis (GSEA) demonstrated no gene set enrichment to NLR high group, which implicates that there is no distinctive mechanism that associate with worse survival. Whereas, immune response-related gene sets significantly enriched to NLR low group in TN subtype. This enrichment was consistent in ER-positive/HER2-negative. Compared with ER-positive/HER2-negative subtype, anti-cancer immune cells such as CD4+ T cells, CD8+ T cells, M1 macrophage, and helper T helper type 1 cells were significantly infiltrated in TN patients (p < 0.001 for all genes), where M2 macrophages and neutrophils were less and regulatory T cells and T helper type 2 cells were more infiltrated in TN subtype. Furthermore, intratumoral NLR was significantly lower in TN compared with ER-positive/HER2-negative subtype (p < 0.001). These results suggest that intratumoral NLR low group is associated with better survival due to favorable tumor immune microenvironment in TN subtype rather than NLR high group has worse survival. Conclusions: Intratumoral NLR low tumor demonstrated more favorable OS and more favorable DFS in TN patients. Intratumoral NLR low breast cancer was associated with enhanced immune response and higher infiltration of anti-cancer immune cells were observed in TN subtype compared to ER-positive/HER2-negative which may contribute to the favorable outcome of in TN breast cancer.


2021 ◽  
Vol 27 ◽  
Author(s):  
Wanbang Zhou ◽  
Yiyang Chen ◽  
Ruixing Luo ◽  
Zifan Li ◽  
Guanwei Jiang ◽  
...  

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Due to the lack of effective biomarkers and its complex immune microenvironment, the effects of current HCC therapies are not ideal. In this study, we used the GSE57957 microarray data from Gene Expression Omnibus database to construct a co-expression network. The weighted gene co-expression network analysis and CIBERSORT algorithm, which quantifies cellular composition of immune cells, were used to identify modules related to immune cells. Four hub genes (EFTUD2, GAPDH, NOP56, PA2G4) were identified by co-expression network and protein-protein interactions network analysis. We examined these genes in TCGA database, and found that the four hub genes were highly expressed in tumor tissues in multiple HCC groups, and the expression levels were significantly correlated with patient survival time, pathological stage and tumor progression. On the other hand, methylation analysis showed that the up-regulation of EFTUD2, GAPDH, NOP56 might be due to the hypomethylation status of their promoters. Next, we investigated the correlations between the expression levels of four hub genes and tumor immune infiltration using Tumor Immune Estimation Resource (TIMER). Gene set variation analysis suggested that the four hub genes were associated with numerous pathways that affect tumor progression or immune microenvironment. Overall, our results showed that the four hub genes were closely related to tumor prognosis, and may serve as targets for treatment and diagnosis of HCC. In addition, the associations between these genes and immune infiltration enhanced our understanding of tumor immune environment and provided new directions for the development of drugs and the monitoring of tumor immune status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kanako Yoshimura ◽  
Takahiro Tsujikawa ◽  
Junichi Mitsuda ◽  
Hiroshi Ogi ◽  
Sumiyo Saburi ◽  
...  

BackgroundFunctional interactions between immune cells and neoplastic cells in the tumor immune microenvironment have been actively pursued for both biomarker discovery for patient stratification, as well as therapeutic anti-cancer targets to improve clinical outcomes. Although accumulating evidence indicates that intratumoral infiltration of immune cells has prognostic significance, limited information is available on the spatial infiltration patterns of immune cells within intratumoral regions. This study aimed to understand the intratumoral heterogeneity and spatial distribution of immune cell infiltrates associated with cell phenotypes and prognosis in head and neck squamous cell carcinoma (HNSCC).MethodsA total of 88 specimens of oropharyngeal squamous cell carcinoma, categorized into discovery (n = 38) and validation cohorts (n = 51), were analyzed for immune contexture by multiplexed immunohistochemistry (IHC) and image cytometry-based quantification. Tissue segmentation was performed according to a mathematical morphological approach using neoplastic cell IHC images to dissect intratumoral regions into tumor cell nests versus intratumoral stroma.ResultsTissue segmentation revealed heterogeneity in intratumoral T cells, varying from tumor cell nest-polarized to intratumoral stroma-polarized distributions. Leukocyte composition analysis revealed higher ratios of TH1/TH2 in tumor cell nests with higher percentages of helper T cells, B cells, and CD66b+ granulocytes within intratumoral stroma. A discovery and validation approach revealed a high density of programmed death receptor-1 (PD-1)+ helper T cells in tumor cell nests as a negative prognostic factor for short overall survival. CD163+ tumor-associated macrophages (TAM) provided the strongest correlation with PD-1+ helper T cells, and cases with a high density of PD-1+ helper T cells and CD163+ TAM had a significantly shorter overall survival than other cases.ConclusionThis study reveals the significance of analyzing intratumoral cell nests and reports that an immune microenvironment with a high density of PD-1+ helper T cells in tumoral cell nests is a poor prognostic factor for HNSCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yaping Deng ◽  
Kehua Li ◽  
Fengwu Tan ◽  
Hanbo Liu

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive solid tumor. Because most studies have focused on the intrinsic carcinogenic pathways of tumors, we focused on the relationship between N6-methyladenosine (m6A) and the prognosis of HNSCC in the tumor immune microenvironment. We downloaded RNA-seq data from the TCGA dataset and used univariate Cox regression to screen m6A-related lncRNAs. The expression value of LASSO-screened genes was the sum of LASSO regression coefficients. We then evaluated relationships between the risk score and cellular components or cellular immune response. Differences in immune response under various algorithms were visualized with heat maps. The GSVA package in R was used to analyze GO, BP, KEGG, and hallmark gene sets of immune checkpoint clusters and immune checkpoint scores. The GSEA analysis was performed with the cluster profile package, yielding 21 m6A genes. Related lncRNAs were screened with Pearson’s correlations, and the resulting 442 lncRNAs were screened using single-factor analysis. Eight lncRNAs closely related to prognosis were identified through survival random forest. Survival analysis showed that patients with a high risk score had a poor prognosis. Low- and high-risk-score groups differed significantly in m6A gene expression. Prognostic scores from different algorithms were significantly correlated with B cells, T cells, and memory cells in the immune microenvironment. Expression of immune checkpoints and signal pathways differed significantly across risk-score groups, suggesting that m6A could mediate lncRNA-induced immune system dysfunction and affect HNSCC development. A comprehensive study of tumor-cell immune characteristics should provide more insight into the complex immune microenvironment, thus contributing to the development of new immunotherapeutic agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Xing ◽  
Guojing Ruan ◽  
Haiwei Ni ◽  
Hai Qin ◽  
Simiao Chen ◽  
...  

MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.


2021 ◽  
Author(s):  
Sheng Fang ◽  
Xiao Fang ◽  
Xin Xu ◽  
Lin Zhong ◽  
An-quan Wang ◽  
...  

Abstract Relevance Rheumatoid arthritis (RA) is a systemic autoimmune disease with an aggressive, chronic synovial inflammation as the main pathological change. However, the specific etiology, pathogenesis, and related biomarkers in diagnosis and treatment are still not fully elucidated. This study attempts to provide new perspectives and insights into RA at the genetic, molecular, and cellular levels through the tenet of personalized medicine. Methods Gene expression profiles of four individual knee synovial tissues were downloaded from a comprehensive gene expression database, R language was used to screen for significantly differentially expressed genes (DEGs), Gene Ontology Enrichment Analysis, Kyoto Gene Encyclopedia, and Gene Set Enrichment Analysis were performed to analyze the biological functions and signaling pathways of these DEGs, STRING online database was used to establish protein-protein interaction networks, Cytoscape software to obtain ten hub genes, Goplot to get six inflammatory immune-related hub genes, and CIBERSORT algorithm to impute immune infiltration. Results Molecular pathways that play important roles in RA were obtained: Toll-like receptors, AMPK, MAPK, TNF, FoxO, TGF-beta, PI3K and NF-κB pathways, Ten hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. among which Adcy2 and Pnoc have not been reported in RA studies, suggesting that they may be worthy targets for further study. It was also found that among the synoviocytes in RA, the proportions of plasma cells, CD8 T cells, follicular helper T cells, monocytes, γ delta T cells, and M0 macrophages were higher, while the proportions of CD4 memory resting T cells, regulatory T cells (Tregs), activated NK cells, resting dendritic cells, M1 macrophages, eosinophils, activated mast cells, resting mast cells were lower in proportion, and each cell played an important role in RA. Conclusions This study may help understand the key genes, molecular pathways, the role of inflammatory immune infiltrating cells in RA’s pathogenesis and provide new targets and ideas for the diagnosis and personalized treatment of RA.


Sign in / Sign up

Export Citation Format

Share Document