scholarly journals Physical-chemical and Biological Properties of Novel Resin-based Composites for Dental Applications

Author(s):  
Zuzanna Buchwald ◽  
Mariusz Sandomierski ◽  
Wojciech Smułek ◽  
Maria Ratajczak ◽  
Adam Patalas ◽  
...  

Abstract Insufficient mechanical properties of hydroxyapatite -based composites prompted the search for new and effective solutions for dental applications. To improve the mechanical properties without losing the remineralization potential, the use of hybrid fillers was proposed. The first of them was based on the formation of hydroxyapatite (HA) layer on the surface of SYLOID®244 silica. The second of the investigated fillers was created by simultaneous synthesis of nanoparticles from precursors of HA and silica. The obtained fillers were extensively characterized by spectral methods including X-ray Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray fluorescence (XRF), as well as by Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS). Tests using probiotic microorganisms were an important part of the analysis, indicating that there was no potential interaction of the materials with microflora. The tests of degree of conversion, depth of cure, opacity, sorption, solubility, flexural and compressive strength, and the remineralizing potential also showed that the composites with nano-sized silica/HA showed better mechanical properties than the composites with HA alone or commercial silica and at the same time the remineralization remained at the desired level. Thus, the proposed composite has a high application potential in the creation of implants and dental materials.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Viktoria Hoppe ◽  
Patrycja Szymczyk-Ziółkowska ◽  
Małgorzata Rusińska ◽  
Bogdan Dybała ◽  
Dominik Poradowski ◽  
...  

The purpose of this work is to obtain comprehensive reference data of the Ti-13Nb-13Zr alloy base material: its microstructure, mechanical, and physicochemical properties. In order to obtain extensive information on the tested materials, a number of examination methods were used, including SEM, XRD, and XPS to determine the phases occurring in the material, while mechanical properties were verified with static tensile, compression, and bending tests. Moreover, the alloy’s corrosion resistance in Ringer’s solution and the cytotoxicity were investigated using the MTT test. Studies have shown that this alloy has the structure α’, α, and β phases, indicating that parts of the β phase transformed to α’, which was confirmed by mechanical properties and the shape of fractures. Due to the good mechanical properties (E = 84.1 GPa), high corrosion resistance, as well as the lack of cytotoxicity on MC3T3 and NHDF cells, this alloy meets the requirements for medical implant materials. Ti-13Nb-13Zr alloy can be successfully used in implants, including bone tissue engineering products and dental applications.


2010 ◽  
Vol 113-116 ◽  
pp. 1712-1715
Author(s):  
Cheng Yu Wang ◽  
Chang Yu Liu ◽  
Jian Li

The preparation of hydrophobic CaCO3-wood composite through a double-diffusive method using dodecanoic acid as organic substrate is demonstrated. The product was characterized by the contact angle analysis, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were measured. The results show that the synthesized CaCO3 fills in the wood cell and covers the surface of wood. The CaCO3-wood composite is hydrophobic. The mechanical properties of wood composite have significantly increased.


2020 ◽  
Vol 7 (3) ◽  
pp. 72 ◽  
Author(s):  
Naji Kharouf ◽  
Youssef Haikel ◽  
Vincent Ball

(1) Background: polyphenols are a broad class of molecules extracted from plants and have a large repertoire of biological activities. Biomimetic inspiration from the effects of tea or red wine on the surface of cups or glass lead to the emergence of versatile surface chemistry with polyphenols. Owing to their hydrogen bonding abilities, coordination chemistry with metallic cations and redox properties, polyphenols are able to interact, covalently or not, with a large repertoire of chemical moieties, and can hence be used to modify the surface chemistry of almost all classes of materials. (2) Methods: the use of polyphenols to modify the surface properties of dental materials, mostly enamel and dentin, to afford them with better adhesion to resins and improved biological properties, such as antimicrobial activity, started more than 20 years ago, but no general overview has been written to our knowledge. (3) Results: the present review is aimed to show that molecules from all the major classes of polyphenolics allow for low coast improvements of dental materials and engineering of dental tissues.


2010 ◽  
Vol 146-147 ◽  
pp. 1593-1596 ◽  
Author(s):  
Xin Zhang ◽  
Li Jun Qu ◽  
Xiao Qing Guo

The morphology and structure of Broussonetia papyrifera(BP) bast and fiber were investigated by SEM, OM, FT-IR and X-ray analysis, and chemical composition of BP bast was analyzed. The results show that the cellulose content in the BP bast can be as high as 63.76%. BP fibers arrange parallel in the bast, which are linked by pection. The cross-section of PB fibers are irregular round with lumens that are almost invisible in the completely mature fibers. The crystallinity of the fiber could reach 83.26%. Most impurities such as hemi-cellulose, lignin, pectin could be effectively removed by degumming, while cellulosic structure is not changed. BP fiber has good mechanical properties, but the single fiber is too short to spin alone.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joo Hyung Lee ◽  
Seong Hun Kim

Abstract Incorporation of nanofillers into polyurethane (PU) is a promising technique for enhancing its thermal and mechanical properties. Silane grafting has been used as a surface treatment for the functionalization of graphene oxide (GO) with numerous reactive sites dispersed on its basal plane and edge. In this study, amine-grafted GO was prepared using silanization of GO with (3-aminopropyl)triethoxysilane. The functionalized graphene oxide (fGO) was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy. Next, it was introduced in PU fabricated using polycaprolactone diol, castor oil, and hexamethylene diisocyanate. The fGO–PU nanocomposites were in turn characterized by FT-IR, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. The results obtained from these analyses showed changes in structural thermal properties, as well as improved thermal stability and mechanical properties because of the strong interfacial adhesion between the fGO and the PU matrix.


2021 ◽  
Author(s):  
Sridevi S ◽  
Ramya S ◽  
Kavitha L ◽  
Gopi Dhanaraj

Abstract Hydroxyapatite (HAp) based composite materials are attaining increasing interest as a potential therapeutic agent for tissue engineering application. In the present study, HAp based composite material is synthesized from biowaste in a cost effective way. Fish bone derived HAp is combined with a cellulose nanofibre (CNF) and curcumin (Cur) as a composite for enhanced thermal, biological and mechanical properties. The HAp/CNF/Cur composite is prepared with different concentrations of CNF (1–3.wt%) and Cur (0.5–1.5 wt%), respectively. Different characterization techniques like Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and thermal gravimetric (TGA) analysis were engaged to assess the functional groups, phase composition, morphology, elemental composition and thermal analysis of the composite. The mechanical strength of the composite is examined using Vickers micro-hardness test. In addition, antibacterial nature of the composite is evaluated against negative and positive bacteria. The viability of human osteosarcoma MG 63 cells over the composite is studied at different concentrations of 1, 3, 7, 10 and 15 µg for 24 h of incubation. Overall, the present investigation shows that the as-synthesized HAp/CNF/Cur composite with enhanced thermal, mechanical and biological properties will be a prospective aspirant for tissue engineering therapeutics.


2006 ◽  
Vol 530-531 ◽  
pp. 709-714 ◽  
Author(s):  
Edcleide Maria Araújo ◽  
Amanda D. de Oliveira ◽  
Renata Barbosa ◽  
Tomás Jefférson Alves de Mélo

In this work, polyethylene/montmorillonite clay nanocomposites were produced by melt intercalation. The clays were treated with quaternary ammonium salts and then treated and untreated clays were introduced in polyethylene. The clays were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The nanocomposites were characterized by mechanical and flammability properties. The results showed that the mechanical properties were improved by introduction of organoclay in polyethylene matrix. By adding only 3wt% montmorillonite, the burning rate of the nanocomposites was reduced by 17% in relation to PE matrix.


2011 ◽  
Vol 674 ◽  
pp. 153-158 ◽  
Author(s):  
Karolina Jurczyk ◽  
Katarzyna Niespodziana ◽  
M.U. Jurczyk ◽  
Mieczyslaw Jurczyk

Ti and Ti-based alloys are preferred materials in the production of implants in both medical and dental applications. One of the methods that allow the change of biological properties of Ti alloys is the modification of their chemical composition and microstructure. In this study, new biocompatible, nanostructured Ti-x vol% SiO2, Ti-x vol% 45S5 Bioglass, and Ti-x vol% HAp (x=0, 3, 10) materials have been developed, manufactured and studied in terms of their biocompatibility. These materials give the possibility of controlling in detail the grain structure and the composition of the alloy and, consequently, the mechanical and biocompatibility performances. Our results of in vitro studies show that these bionanocomposites have excellent biocompatibility and could integrate with bone. After 1st day of incubation cells show good adhesion to the surface of studied samples in the form of filopodia. After 5 days of incubation, the typical monolayer was observed. With regard to microcrystalline Ti it could help to obtain better dental implants with better mechanical properties and corrosion resistance.


2011 ◽  
Vol 175-176 ◽  
pp. 79-84
Author(s):  
Min Qing Luo ◽  
Cen Cen Zhang ◽  
Shen Zhou Lu

The transparent water-insoluble silk fibroin(SF) films were casted from the mixture solution of silk fibroin and xylitol/mannitol. The structure, surface morphology, solubility, mechanical properties and light transmittance of the blend films were measured. FT-IR, X-ray diffraction retuslts indicated that the films were mainly composed of Silk I structure. SEM showed the blend films with xylitol were miscible, whereas the blend films with mannitol had phase-separated structure. There were lots of nanopores in the blend films in the wet state. The insoluble SF /xylitol films had excellent mechanical properties while the SF / mannitol films were brittle. The mechanical property of SF/alcohol blend films were consistent with the human cornea in wet state.When the contents of xylitol were 10% and 20%, the blend films had high light transmittance which were similar to human cornea. In summary, the SF /xylitol film containing 10% xylitol provides a great potential to act as repairing materials for cornea.


Sign in / Sign up

Export Citation Format

Share Document