scholarly journals LncRNA HOXB-AS3 Promotes Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Gallbladder Cancer Cells by Activating the MEK/ERK Pathway

Author(s):  
Jiayan Wu ◽  
Hongquan Zhu ◽  
Jiandong Yu ◽  
Zhiping Chen ◽  
Zeyu Lin ◽  
...  

Abstract OBJECTIVE: Long non-coding RNA HOXB-AS3 has been implicated in tumor progression in a variety of carcinomas. However, its biological role in gallbladder cancer (GBC) is unknown. The biological function and underlying mechanism of the lncRNA HOXB-AS3 for GBC were investigated in this study.MATERIALS AND METHODS: To investigate the function of lncRNA HOXB-AS3 in GBC, the level of lncRNA HOXB-AS3 in GBC cells was detected by quantitative reverse-transcription polymerase chain reaction. The cell viability was tested by cell counting kit-8 assay and colony formation assay. Flow cytometry was performed to investigate cell apoptosis and cell cycle. In addition, cell migration ability was assessed by wound healing assay and cell invasion ability by transwell invasion assay. RESULTS: It was found that HOXB-AS3 was obviously elevated in GBC tissues and cells. However, inhibition of HOXB-AS3 could depress NOZ and GBC-SD cell viability as well as induce cell apoptosis. Also, the gallbladder cancer cell cycle was blocked in the G1 phase. Meanwhile, NOZ and GBC-SD cell migration, invasion, and epithelial-mesenchymal transition were obviously suppressed by knockdown of HOXB-AS3. What is more, we found that HOXB-AS3 might promote gallbladder progress by activating the MEK/ERK pathway.CONCLUSION: The results show that lncRNA HOXB-AS3 serves as a key regulator in GBC progression, which provides a new treatment strategy for GBC.

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Juan Jin ◽  
Yunguang Wang ◽  
Li Zhao ◽  
Wenli Zou ◽  
Mingming Tan ◽  
...  

Background. Podocyte migration is actively involved in the process of podocyte loss and proteinuria production, which is closely associated with the development of diabetic nephropathy (DN). Exosomes from adipose-derived stem cells (ADSCs-Exos) effectively inhibit podocyte apoptosis in the treatment of DN. However, how ADSCs-Exos affect the migration of podocytes is obscure. This study is aimed at exploring the regulatory role of ADSCs-Exos on cell migration and the underlying mechanism. Methods. ADSCs-Exo was authenticated by transmission electron microscopy (TEM), western blotting, and flow cytometry. Cell viability and migration ability of podocytes were measured by CCK8 and Transwell assays, respectively. Relative expressions of miRNAs and mRNAs were determined by qRT-PCR. The transmitting between PKH26-labeled exosome and podocytes was evaluated by IF assay. Dual luciferase reporter assay was employed to detect the relationship between miR-215-5p and ZEB2. Results. The exposure to serum from DN patient (hDN-serum) significantly inhibited cell viability of podocytes, but ADSCs-Exo addition notably blunts cytotoxicity induced by the transient stimulus of hDN-serum. Besides, ADSCs-Exo administration powerfully impeded high glucose- (HG-) induced migration and injury of podocyte. With the podocyte dysfunction, several miRNAs presented a significant decline under the treatment of HG including miR-251-5p, miR-879-5p, miR-3066-5p, and miR-7a-5p, all of which were rescued by the addition of ADSCs-Exo. However, only miR-251-5p was a key determinant in the process of ADSCs-Exo-mediated protective role on podocyte damage. The miR-251-5p inhibitor counteracted the improvement from the ADSCs-Exo preparation on HG-induced proliferation inhibition and migration promotion. Additionally, miR-215-5p mimics alone remarkably reversed HG-induced EMT process of podocyte. Mechanistically, we confirmed that ADSCs-Exos mediated the shuttling of miR-215-5p to podocyte, thereby protecting against HG-induced metastasis, possibly through inhibiting the transcription of ZEB2. Conclusion. ADSCs-Exo has the protective effect on HG-evoked EMT progression of podocytes thru a mechanism involving ZEB2. Potentially, the ADSCs-Exo preparation is a useful therapeutic strategy for improving podocyte dysfunction and DN symptoms clinically.


2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2020 ◽  
Author(s):  
Yixuan Cai ◽  
Min Hao ◽  
Yue Chang ◽  
Yun Liu

Abstract Background: Endometrial carcinoma is a frequently diagnosed cancer among females. LncRNAs are reported to be associated with various cancers. Their biological roles in endometrial carcinoma progression is an emerging scientific area. LINC00665 can exert a significant role in many cancers. However, its potential function in endometrial carcinoma is still poorly known.Method: qRT-PCR was carried out to test expression of LINC00665 and HMGA1. Western blot analysis was carried out to detect protein expression of HMGA1. Cell proliferation was evaluated using Cell Counting Kit-8 (CCK-8) and EdU assay. Flow cytometry assay was used to determine cell apoptosis and cell cycle. Wound healing and transwell invasion assay was carried out to test cell migration and invasion. Immunohistochemical staining and HE staining were conducted to assess Ki-67 and tumor growth respectively.Results: Expression of LINC00665 in clinical endometrial carcinoma tissues and cells was obviously up-regulated. Loss of LINC00665 could repress endometrial carcinoma cell viability, induce cell apoptosis and block cell cycle in G1 phase. KLE and HHUA cell migration and invasion ability were depressed by LINC00665 shRNA. Decrease of LINC00665 suppressed endometrial carcinoma tumorigenicity in vivo. RIP assay proved that LINC00665 directly bound with HMGA1 protein. shRNA of HMGA1 obviously restrained endometrial carcinoma cell growth and cell invasion.Conclusions: LINC00665 might promote endometrial carcinoma progression by positively modulating HMGA1.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Liu Wensheng ◽  
Zhang Bo ◽  
Hu Qiangsheng ◽  
Xu Wenyan ◽  
Ji Shunrong ◽  
...  

Abstract Background Methyl-CpG binding domain protein 1 (MBD1), which couples DNA methylation to transcriptional repression, has been implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell cycle progression and development. It has also been proven that MBD1 is involved in tumor development and progression. However, whether MBD1 is involved in tumorigenesis, especially in gallbladder cancer, is totally unknown. Methods Human GBC-SD and SGC996 cells were used to perform experiments. Invasion, wound healing and colony formation assays were performed to evaluate cell viability. A CCK-8 assay was performed to assess gallbladder cancer cell viability after gemcitabine treatment. Western blot analysis was used to evaluate changes in protein expression. Human gallbladder cancer tissues and adjacent nontumor tissues were subjected to immunohistochemical staining to detect protein expression. Results We found that MBD1 expression was significantly upregulated in gallbladder cancer tissues compared with that in surrounding normal tissues according to immunohistochemical analysis of 84 surgically resected gallbladder cancer specimens. These data also indicated that higher MBD1 expression was correlated with lymph node metastasis and poor survival in gallbladder cancer patients. Overexpression and deletion in vitro validated MBD1 as a potent oncogene promoting malignant behaviors in gallbladder cancer cells, including invasion, proliferation and migration, as well as epithelial–mesenchymal transition. Studies have demonstrated that epithelial–mesenchymal transition is common in gallbladder cancer, and it is well known that drug resistance and epithelial–mesenchymal transition are very closely correlated. Herein, our data show that targeting MBD1 restored gallbladder cancer cell sensitivity to gemcitabine chemotherapy. Conclusions Taken together, the results of our study revealed a novel function of MBD1 in gallbladder cancer tumor development and progression through participation in the gallbladder cancer epithelial–mesenchymal transition program, which is involved in resistance to gemcitabine chemotherapy. Thus, MBD1 may be a potential therapeutic target for gallbladder cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ling Zhang ◽  
Abid Naeem ◽  
Shaofeng Wei ◽  
Zexie Li ◽  
Zhenzhong Zang ◽  
...  

The current study investigates the inhibitory effects of Pulsatilla pentacyclic triterpenoid saponins extract (PPTS) on epithelial-mesenchymal transition (EMT) triggered by the transforming growth factor-β1 (TGF-β1) in human colorectal cancer SW480 cell line, further illustrates the possible mechanism of PPTS inhibition of growth and invasion from the perspective of EMT, and provides new theoretical support for the treatment of tumor by Chinese medicine. The SW480 cells were treated in groups: blank control, TGF-β1 (10 ng/mL), and varying concentrations of PPTS cotreated with TGF-β1-induced (10 ng/mL) groups. CCK8 was used to detect cell viability; transwell was applied to detect invasion ability, cell migration ability was also determined, ELISA and RT-qPCR were utilized for the determination of CYP3A, CYP2C9, CYP2C19, N-cadherin, and MMP-9 expression. Flow cytometry detection was applied to detect cell cycle and apoptosis. The results obtained have shown that PPTS can significantly inhibit the invasion and migration of tumors in SW480 cells and can also block the S phase in the cell cycle but may produce cytotoxicity in higher doses. The present research work provides substantial evidence that PPTS has a significant inhibitory effect on TGF-β1-induced EMT in SW480 cells and it also promotes apoptosis.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092559 ◽  
Author(s):  
Jianxin Liu ◽  
Yongan Chen ◽  
Zhiyun Cao ◽  
Bin Guan ◽  
Jun Peng ◽  
...  

Objective To investigate the anti-metastatic effects of Babao Dan (BBD) on gastric cancer (GC) cells (AGS and MGC80-3) and explore the underlying molecular mechanisms by which it inhibits epithelial–mesenchymal transition (EMT). Methods AGS and MGC80-3 cells were treated with BBD. In addition, cells were treated with the EMT inducer transforming growth factor-β1 (TGF-β1). Cell viability was determined using the MTT assay, and the live cell ratio was calculated via cell counting. Cell invasion and migration were evaluated using the Transwell assay. Western blotting was performed to measure the protein expression of EMT biomarkers and related genes. Results BBD inhibited the viability, migration, and invasion of AGS and MGC80-3 cells, but it did not reduce the live cell ratio. Furthermore, BBD inhibited the expression of N-cadherin, vimentin, zinc finger E-box binding homeobox (ZEB)1, ZEB2, Twist1, matrix metalloproteinase (MMP)2, MMP9, TGF-β1, and p-Smad2/3, whereas E-cadherin expression was increased in AGS and MGC80-3 cells to different degrees. Using a GC cell model of EMT induced by TGF-β1, we proved that BBD inhibited p-Smad2/3 and N-cadherin expression, cell migration, and cell invasion. Conclusion BBD suppressed cell migration and invasion by inhibiting TGF-β–induced EMT and inactivating TGF-β/Smad signaling in GC cells.


2020 ◽  
Vol 19 (1) ◽  
pp. 52-57
Author(s):  
Li Wen ◽  
Yuli Liang ◽  
Jing Li ◽  
Meijie Quan ◽  
Yanxiao Li ◽  
...  

Acute myeloid leukemia remains a therapeutic challenge in the medical field and improvement in chemotherapeutics is needed. In this paper, MOLM-13 cells were treated with different concentrations (0, 10, 50, 100 µM) of dentatin and cell viability was detected using Cell Counting Kit-8. Cell cycle and cell apoptosis rates were evaluated by flow cytometry. The relevant proteins were assessed by Western blot. Consequently, the results show that dentatin inhibits the cell viability in a dose-dependent manner. In addition, dentatin arrests the cell cycle at G1 phase (P ‹ 0.01). Moreover, dentatin induces the cell apoptosis. Further study revealed that dentatin downregulates the phosphorylated STAT3 and CyclinD1 but upregulates the cleaved caspase-3. In summary, this study confirms that dentatin inhibits MOLM-13 cell viability, increases cell apoptosis, and retards cell cycle.


2021 ◽  
Author(s):  
Ping Tang ◽  
Jianfeng Sheng ◽  
Xiujuan Peng ◽  
Renfei Zhang ◽  
Tao Xu ◽  
...  

Abstract Background: Advanced differentiated thyroid cancer cells are subjected to extreme nutritional starvation which contributes to develop resistance to treatments; however, the underlying mechanism remains unclear.Methods: We used 0.5% serum to mimic starvation during cell culture. A CCK8 assay, cell death Detection ELISAPLUS kit, PI staining were measured to determine cell viability, cell apoptosis and cell cycle respectively in BCPAP cells and TPC-1 cells expressing shRNA against NOX4. The cells were then treated with etoposide and doxorubicin, two chemotherapeutic drugs, as well as lenvatinib to determine the role of NOX4 in resistance. Lenvatinib-resistant BCPAP cells (LRBCs) were also established to confirm the role. Finally, GLX351322, a chemical inhibitor targeting NOX4, was used to inhibit NOX4-derived ROS and detect the the contribution of NOX4 to resistance in vitro and in vivo. Results: NADPH oxidase 4 (NOX4) is highly expressed under serum starvation in BCPAP or TPC-1 cells. NOX4 knockdown impairs cell viability, increases cell apoptosis, extends G1 phase in cell cycle and modulates the level of energy-associated metabolites in starved cells. When these starved cells or Lenvatinib-resistant BCPAP cells (LRBCs) are treated with chemotherapeutic drugs or Lenvatinib, NOX4 knockdown inhibits cell viability and aggravates cell apoptosis depending on NOX4-derived ROS production. GLX351322, a NOX4-derived ROS inhibitor, has a significantly inhibitory effect on cell growth in vitro and the growth of BPCPA-derived even LRBCs-derived xenografts in vivo.Conclusions: These findings highlight NOX4 and NOX4-derived ROS as a potential therapeutic target in resistance of PTC patients.


Sign in / Sign up

Export Citation Format

Share Document