Targeting NOX4 Disrupts the Resistance of Papillary Thyroid Carcinoma to Chemotherapeutic Drugs and Lenvatinib

Author(s):  
Ping Tang ◽  
Jianfeng Sheng ◽  
Xiujuan Peng ◽  
Renfei Zhang ◽  
Tao Xu ◽  
...  

Abstract Background: Advanced differentiated thyroid cancer cells are subjected to extreme nutritional starvation which contributes to develop resistance to treatments; however, the underlying mechanism remains unclear.Methods: We used 0.5% serum to mimic starvation during cell culture. A CCK8 assay, cell death Detection ELISAPLUS kit, PI staining were measured to determine cell viability, cell apoptosis and cell cycle respectively in BCPAP cells and TPC-1 cells expressing shRNA against NOX4. The cells were then treated with etoposide and doxorubicin, two chemotherapeutic drugs, as well as lenvatinib to determine the role of NOX4 in resistance. Lenvatinib-resistant BCPAP cells (LRBCs) were also established to confirm the role. Finally, GLX351322, a chemical inhibitor targeting NOX4, was used to inhibit NOX4-derived ROS and detect the the contribution of NOX4 to resistance in vitro and in vivo. Results: NADPH oxidase 4 (NOX4) is highly expressed under serum starvation in BCPAP or TPC-1 cells. NOX4 knockdown impairs cell viability, increases cell apoptosis, extends G1 phase in cell cycle and modulates the level of energy-associated metabolites in starved cells. When these starved cells or Lenvatinib-resistant BCPAP cells (LRBCs) are treated with chemotherapeutic drugs or Lenvatinib, NOX4 knockdown inhibits cell viability and aggravates cell apoptosis depending on NOX4-derived ROS production. GLX351322, a NOX4-derived ROS inhibitor, has a significantly inhibitory effect on cell growth in vitro and the growth of BPCPA-derived even LRBCs-derived xenografts in vivo.Conclusions: These findings highlight NOX4 and NOX4-derived ROS as a potential therapeutic target in resistance of PTC patients.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yunhui Feng ◽  
Liyan Mei ◽  
Maojie Wang ◽  
Qingchun Huang ◽  
Runyue Huang

18β-Glycyrrhetinic acid (18β-GA), an active component from Glycyrrhiza glabra L. root (licorice), has been demonstrated to be able to protect against inflammatory response and reduce methotrexate (MTX)-derived toxicity. This study was therefore designed to test the therapeutic possibility of 18β-GA on rheumatoid arthritis (RA) and to explore the underlying mechanism. LPS or TNF-α-induced inflammatory cell models and collagen-induced arthritis (CIA) animal models were applied in this study. Real-time quantitative PCR (RT-qPCR) was used to measure the mRNA levels of various cytokines and FOXO family members. The protein levels of molecules in the MAPK/NF-κB signaling pathway were analyzed using western blot. The cell proliferation assay and colony-forming assay were used to test the influence of 18β-GA on cell viability. The cell apoptosis assay and cell cycle assay were performed to detect the effect of 18β-GA on cell proliferative capacity by using flow cytometry. Hematoxylin and eosin (H&E) staining was performed to evaluate pathological changes after drug administration. The enzyme-linked immunosorbent assay (ELISA) was carried out for the detection of cytokines in serum. In vitro, we found that 18β-GA decreased the mRNA levels of IL-1β, IL-6, and COX-2 by inhibiting the MAPK/NF-κB signaling pathway in MH7A and RAW264.7 cell lines. Moreover, 18β-GA was able to suppress cell viability, trigger cell apoptosis, and G1 phase cell cycle arrest in our in vitro studies. 18β-GA dramatically enhanced the mRNA level of FOXO3 in both TNF-α- and LPS-induced inflammation models in vitro. Interestingly, after analyzing GEO datasets, we found that the FOXO3 gene was significantly decreased in the RA synovial tissue as compared to healthy donors in multiple microarray studies. In vivo, 18β-GA exhibited a promising therapeutic effect in a collagen-induced arthritis mouse model by alleviating joint pathological changes and declining serum levels of TNF-α, IL-1β, and IL-6. Finally, we observed that 18β-GA administration could mitigate liver damage caused by collagen or MTX. Collectively, the current study demonstrates for the first time that 18β-GA can inhibit inflammation and proliferation of synovial cells, and the underlying mechanism may be associated with its inhibition of MAPK/NF-κB signaling and promotion of FOXO3 signaling. Therefore, 18β-GA is expected to be a new drug candidate for RA therapy.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Rui Li ◽  
Tianfeng Liu ◽  
Juanjuan Shi ◽  
Wenqing Luan ◽  
Xuan Wei ◽  
...  

Abstract Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.


2019 ◽  
Vol 97 (5) ◽  
pp. 589-599 ◽  
Author(s):  
Jie Yang ◽  
Fan Yu ◽  
Jinlei Guan ◽  
Tao Wang ◽  
Changjiang Liu ◽  
...  

A previous study has reported that knockdown of RING finger protein 2 (RNF2) increases the radiosensitivity of esophageal cancer cells both in vitro and in vivo. However, the effect of RNF2 knockdown on radiosensitivity in squamous cell carcinoma (SqCC) remains unknown. For this, NCI-H226 and SK-MES-1 cells were exposed to X-ray irradiation and then RNF2 levels were determined. RNF2 was knocked-down and stable transfectants were selected. Radiosensitivity, cell proliferation, apoptosis, cell cycle, and γ-H2AX foci formation were evaluated. Interaction among ataxia telangiectasia mutated protein (ATM), mediator of DNA damage checkpoint 1 (MDC1), and H2AX were examined. Xenograft models were used to explore the effect of RNF2 knockdown on radiosensitivity in vivo. The results showed that RNF2 expression was significantly increased by X-ray irradiation. RNF2 knockdown combined with X-ray irradiation markedly inhibited cell proliferation, caused cell cycle arrest at the G1 phase, and induced cell apoptosis. In addition, RNF2 knockdown enhanced the radiosensitivity of SqCC cells, inhibited irradiation-induced γ-H2AX foci formation, and impaired the interactions among ATM, MDC1, and H2AX. Furthermore, combination of RNF2 knockdown and X-ray irradiation suppressed tumor growth and promoted tumor cell apoptosis in vivo. RNF2 may be a new therapeutic target to enhance the radiosensitivity of SqCC cells in lung.


2022 ◽  
Author(s):  
Jiayan Wu ◽  
Hongquan Zhu ◽  
Jiandong Yu ◽  
Zhiping Chen ◽  
Zeyu Lin ◽  
...  

Abstract OBJECTIVE: Long non-coding RNA HOXB-AS3 has been implicated in tumor progression in a variety of carcinomas. However, its biological role in gallbladder cancer (GBC) is unknown. The biological function and underlying mechanism of the lncRNA HOXB-AS3 for GBC were investigated in this study.MATERIALS AND METHODS: To investigate the function of lncRNA HOXB-AS3 in GBC, the level of lncRNA HOXB-AS3 in GBC cells was detected by quantitative reverse-transcription polymerase chain reaction. The cell viability was tested by cell counting kit-8 assay and colony formation assay. Flow cytometry was performed to investigate cell apoptosis and cell cycle. In addition, cell migration ability was assessed by wound healing assay and cell invasion ability by transwell invasion assay. RESULTS: It was found that HOXB-AS3 was obviously elevated in GBC tissues and cells. However, inhibition of HOXB-AS3 could depress NOZ and GBC-SD cell viability as well as induce cell apoptosis. Also, the gallbladder cancer cell cycle was blocked in the G1 phase. Meanwhile, NOZ and GBC-SD cell migration, invasion, and epithelial-mesenchymal transition were obviously suppressed by knockdown of HOXB-AS3. What is more, we found that HOXB-AS3 might promote gallbladder progress by activating the MEK/ERK pathway.CONCLUSION: The results show that lncRNA HOXB-AS3 serves as a key regulator in GBC progression, which provides a new treatment strategy for GBC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lixia Cao ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aim to demonstrate the potential of chidamide (CHI) combined with the chemotherapy drug doxorubicin (DOX) to overcome chemotherapeutic resistance of breast cancer in vitro and in vivo, laying the experimental foundation for the next clinical application. The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 was activated in the CHI-treated group and combined treatment group, and then the activated p53 up-regulated p21, apoptosis regulator recombinant protein (Puma), and pro-apoptotic protein Bax, down-regulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Cao ◽  
Hong Zhang ◽  
Jie Guo ◽  
Xiao-hui Liu ◽  
Chang Liu ◽  
...  

Objectives. Hua-Zheng-Hui-Sheng-Dan (HZHSD) was used as an experimental model to explore research methods of large formulae in traditional Chinese medicine (TCM) using current molecular biology approaches.Materials and Methods. The trypan blue exclusion assay was used to determine cell viability and cell numbers. Flow cytometry was used to assess cell cycle distribution and apoptosis. The concentration of cyclin D1 was analyzed by enzyme-linked immunosorbent assay. The median effect principle was used in drug combination studies. An orthogonal experimental design was used to estimate the effects of each herb at different concentrations. The HeLa xenograft mouse model was used to compare the antitumor activity of drugs in vivo.Results. Among the 35 herbs that comprise HZHSD, Radix Rehmanniae Preparata (RRP),Caesalpinia sappan(CS),Evodia rutaecarpa(ER), Folium Artemisiae Argyi (FAA),Leonurus japonicusHoutt (LJH), Tumeric (Tu), Radix Paeoniae Alba (RPA), and Trogopterus Dung (TD) effectively inhibited the proliferation of HeLa and SKOV3 cells. Only RRR had an effect on HeLa and SKOV3 cell viability. According to the median effect principle,Angelica sinensis(Oliv.) (AS),Tabanus(Ta), and Pollen Typhae (PT), which were proven to have a significant synergistic inhibitory effect on the proliferation of HeLa cells, were added to the original eight positive herbs. The combination of RPA and AS had a synergistic effect on inducing cell cycle S phase arrest and decreasing intracellular cyclin D1 in HeLa cells. By orthogonal experimental design, LJH and Tu were considered unnecessary herbs. The small formula (SHZHSD) consisted of RPA, AS, RRR, Ta., TD, PT, ER, CS, and FAA and was able to inhibit cell proliferation and induce cell apoptosis. The antitumor effects of HZHSD and SHZHSD were also compared in vivo.Conclusions. Through molecular biology approaches both in vitro and in vivo, research into single drugs, and analysis using the median effect principle and orthogonal experimental design, the small formula (SHZHSD) was determined from the original formula (HZHSD). SHZHSD exhibited superior antitumor activity compared with the original formula both in vitro and in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Jie Qi ◽  
Xiangyuan Chen ◽  
Qichao Wu ◽  
Jing Wang ◽  
Hao Zhang ◽  
...  

Background. Hepatocellular carcinoma (HCC) is a life-threatening cancer, and the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signalling pathway plays a crucial role in apoptosis resistance in cancer cells. Fasting is reported to mediate tumour growth reduction and apoptosis. SET8 is involved in cancer proliferation, invasiveness, and migration. However, whether SET8 participates in fasting-mediated apoptosis in HCC remains unclear. Methods. We used immunohistochemical staining to analyse the expression of SET8, Keap1, and Nrf2 in HCC tissues. Cell viability, apoptosis, and cellular reactive oxygen species (ROS) were assessed, and Western blot and qPCR analyses were used to examine the expression of Keap1/Nrf2 in HCC cells under fasting, SET8 overexpression, and PGC1α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1α interacts with SET8. In vivo experiments were performed to verify the conclusions from the in vitro experiments. Results. Our data indicate that SET8 expression is associated with poor survival in HCC patients. Both in vitro and in vivo results demonstrated that fasting decreased cell viability and downregulated expression of SET8, Nrf2, and downstream effectors of Nrf2, while it upregulated Keap1 expression, mediated ROS accumulation, and induced HCC cell apoptosis. These results were similar to what is observed in SET8-deficient cells. Furthermore, SET8 was found to interact with PGC1α, and both PGC1α and H4K20me1, a downstream target of SET8, were found to be enriched at the Keap1 promoter region. These two factors were further determined to attenuate Keap1 promoter activity. Conclusions. The results of our study demonstrate that fasting induces HCC apoptosis by inhibiting SET8 expression and that SET8 interacts with PGC1α to activate the Nrf2/ARE signalling pathway by inhibiting Keap1 expression.


2020 ◽  
Vol 27 (1) ◽  
pp. 41-49
Author(s):  
Pibao Li ◽  
Yanfen Yao ◽  
Yuezhen Ma ◽  
Yanbin Chen

In this study, we aim to investigate the role of miR-30a-5p in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) using LPS-induced A549 cells and mice. We found cell viability was significantly declined accompanied by cell apoptosis and cell cycle arrest at G0/G1 phase in LPS-treated A549 cells. MiR-30a-5p was down-regulated by LPS treatment and miR-30a-5p significantly protected A549 cells from LPS-induced injury by increasing cell viability, reducing cell apoptosis, promoting cell cycle progression, and inhibiting inflammatory reactions. Dual-luciferase activity demonstrated that RUNX2 was a direct target for miR-30a-5p and its expression was negatively and directly regulated by miR-30a-5p. Over-expression of RUNX2 weakened the inhibitory effect of miR-30a-5p on inflammatory injury. In vivo, over-expression of miR-30a-5p alleviated LPS-induced inflammatory responses and lung injury in LPS-administrated mice. Besides, miR-30a-5p repressed LPS-elevated phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) and c-Jun N-terminal kinase (JNK), IκBα degradation, and NF-κB p65 phosphorylation. In conclusion, miR-30a-5p ameliorates LPS-induced inflammatory injury in A549 cells and mice via targeting RUNX2 and related signaling pathways, thereby influencing the progression of ARDS.


2020 ◽  
Author(s):  
Weisheng Guo ◽  
Lin Zhao ◽  
Yaguang Wei ◽  
Peng Liu ◽  
Yu Zhang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans with poor therapeutic effects. Circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell proliferation and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The prediction of targets was performed using the bioinformatics tools, and the verification of targeted relationship was conducted using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by western blot.Result: The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was interacted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in vitro. Circ_0015756 could regulate FGFR1 expression by targeting miR-610.Conclusion: Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 and sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document