scholarly journals Omics multi-layers networks and identification of genes involved in fat storage and metabolism in poultry using interactomics approach

2020 ◽  
Author(s):  
abolfazl bahrami ◽  
Farzad Ghafouri ◽  
Mostafa Sadeghi ◽  
Seyed Reza Miraei-Ashtiani

Abstract Background Fatty acid metabolism in animals has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. Methods To study multi-omics layers of adipose tissue and identification of genes involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, high-throughput screening (HTS) techniques were used. The Gene-miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. Results In the analysis of microarray and RNA-Seq data, 1835 genes were detected by comparing the identified genes with significant expression differences. Then, by comparing, 34 genes and 19 miRNAs were detected as common and main nodes. The literature mining approach was used and 7 genes were identified and added to the common gene set. Module finding revealed three important and functional modules. The detected modules 1, 2, and 3 were involved in the PPAR signaling pathway, biosynthesis of unsaturated fatty acids, and Alzheimer's disease metabolic pathway, adipocytokine, insulin, PI3K-Akt, mTOR and AMPK signaling pathway. Conclusions This approach revealed a new insight for a better understanding of the biological processes associated with adipose tissue.

2021 ◽  
Vol 12 ◽  
Author(s):  
Farzad Ghafouri ◽  
Abolfazl Bahrami ◽  
Mostafa Sadeghi ◽  
Seyed Reza Miraei-Ashtiani ◽  
Maryam Bakherad ◽  
...  

Fatty acid metabolism in poultry has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. To study omics multilayers of adipose tissue and identification of genes and miRNAs involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, as well as high-throughput techniques, were used. The gene–miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. In the analysis of microarray and RNA-Seq data, 1,835 genes were detected by comparing the identified genes with significant expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ −2). Then, by comparing between different data sets, 34 genes and 19 miRNAs were detected as common and main nodes. A literature mining approach was used, and seven genes were identified and added to the common gene set. Module finding revealed three important and functional modules, which were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids, Alzheimer’s disease metabolic pathway, adipocytokine, insulin, PI3K–Akt, mTOR, and AMPK signaling pathway. This approach revealed a new insight to better understand the biological processes associated with adipose tissue.


2019 ◽  
Vol 47 (04) ◽  
pp. 803-822 ◽  
Author(s):  
Hyun Jeong Kwak ◽  
Mi-Young Jeong ◽  
Jae-Young Um ◽  
Jinbong Park

Activation of brown adipose tissue (BAT) has been proposed as a promising target against obesity due to its increased capacity for thermogenesis. In this study, we explored the effect of [Formula: see text]-Lapachone ([Formula: see text]L), a compound obtained from the bark of the lapacho tree, against obesity. In vivo administration of [Formula: see text]L into either high fat diet (HFD)-induced obese C57BL6 mice and genetically obese Lepr[Formula: see text] mice prevented body weight gain, which was associated with tissue weight loss of white adipose tissue (WAT). In addition, [Formula: see text]L elevated thermogenic proteins including uncoupling protein 1 (UCP1) and mitochondrial count in BAT and human adipose tissue-derived mesenchymal stem cells (hAMSCs). [Formula: see text]L also induced AMP-activated protein kinase (AMPK) phosphorylation, subsequent upregulation of acetyl-CoA carboxylase (ACC) and UCP1, and these effects were diminished by AMPK inhibitor compound C, suggesting that AMPK underlies the effects of [Formula: see text]L. Mitogen-activated protein kinase pathways participated in the thermogenesis of [Formula: see text]L, specifically p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were activated by [Formula: see text]L treatment in hAMSCs. Additionally, inhibitors of p38/JNK/ERK1/2 abrogated the activity of [Formula: see text]L. Taken together, [Formula: see text]L exerts anti-obese effects by inducing thermogenesis mediated by AMPK signaling pathway, suggesting that [Formula: see text]L may have a potential therapeutic implication of obesity. Taken together, [Formula: see text]L exerts anti-obese effects by not only inducing thermogenesis on brown adipocytes but also inducing the browning of white adipocytes. The anti-obese effect of [Formula: see text]L is mediated by AMPK signaling pathway, suggesting that [Formula: see text]L may have potential therapeutic implication of obesity.


2011 ◽  
Vol 286 (18) ◽  
pp. 15652-15665 ◽  
Author(s):  
Zhikui Wei ◽  
Jonathan M. Peterson ◽  
G. William Wong

Members of the C1q/TNF family play important and diverse roles in the immune, endocrine, skeletal, vascular, and sensory systems. Here, we identify and characterize CTRP13, a new and extremely conserved member of the C1q/TNF family. CTRP13 is preferentially expressed by adipose tissue and the brain in mice and predominantly by adipose tissue in humans. Within mouse adipose tissue, CTRP13 is largely expressed by cells of the stromal vascular compartment. Due to sexually dimorphic expression patterns, female mice have higher transcript and circulating CTRP13 levels than males. CTRP13 transcript and circulating levels are elevated in obese male mice, suggesting a potential role in energy metabolism. The insulin-sensitizing drug rosiglitazone also increases the expression of CTRP13 in adipocytes, which correlates with the insulin-sensitizing action of CTRP13. In a heterologous expression system, CTRP13 is secreted as a disulfide-linked oligomeric protein. When co-expressed, CTRP13 forms heteromeric complexes with a closely related family member, CTRP10. This heteromeric association does not involve conserved N-terminal Cys residues. Functional studies using purified recombinant protein demonstrated that CTRP13 is an adipokine that promotes glucose uptake in adipocytes, myotubes, and hepatocytes via activation of the AMPK signaling pathway. CTRP13 also ameliorates lipid-induced insulin resistance in hepatocytes through suppression of the SAPK/JNK stress signaling that impairs the insulin signaling pathway. Further, CTRP13 reduces glucose output in hepatocytes by inhibiting the mRNA expression of gluconeogenic enzymes, glucose-6-phosphatase and the cytosolic form of phosphoenolpyruvate carboxykinase. These results provide the first functional characterization of CTRP13 and establish its importance in glucose homeostasis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruili Liu ◽  
Xianxun Liu ◽  
Xuejin Bai ◽  
Chaozhu Xiao ◽  
Yajuan Dong

AbstractTo provide new ideas for improving meat quality and generating new breeds of cattle, the important candidate genes affecting fat deposition in two kinds of cattle were identified. Eighteen months Shandong black cattle (n = 3) and Luxi cattle (n = 3) were randomly assigned into two environmental. The longissimus dorsi muscles of Shandong Black Cattle and Luxi Cattle were collected and analyzed by fatty acid determination, high-throughput sequencing transcriptomics, qRT-PCR expression profile and western blot. The ratio of unsaturated fatty acids to saturated fatty acids was 1.37:1 and 1.24:1 in the muscle tissues of Shandong black cattle and Luxi cattle, respectively. The results of RNA-Seq analysis revealed 1320 DEGs between the longissimus dorsi of Shandong black cattle and Luxi cattle. A total of 867 genes were upregulated, and the other 453 genes were downregulated. With GO enrichment analysis, it was found that the identified DEGs were significantly enriched in regulation of the Wnt signaling pathway, negative regulation of the Wnt signaling pathway, cAMP metabolic process, fat cell differentiation and among other functions. We found that regulation of lipolysis in adipocytes was the significant enrichment pathway of upregulated genes and downregulated genes, PPAR signaling pathway and AMPK signaling pathway are highly representative pathways of lipid metabolism in Shandong black cattle. Network analysis showed that PPARGC1A, ADCY4, ANKRD6, COL1A1, FABP4, ADIPOQ, PLIN1, PLIN2, and LIPE genes were correlated with key loci genes in multiple metabolic pathways. Meanwhile we found that FABP4 and ADIPOQ had 7 common regulatory factors in different genes, which were PLIN1, PLIN2, PPARGC1A, RXRA, PCK1, LEPR, LEP. These genes were involved in regulation of lipolysis in adipocytes, adipocytokine signaling pathway, PPAR signaling pathway. FABP4 and ADIPOQ were selected as important candidate marker genes for fat deposition based on the results.


2020 ◽  
Vol 98 (7) ◽  
Author(s):  
Xiyi Hu ◽  
Yuanli Cai ◽  
Linglian Kong ◽  
Hai Lin ◽  
Zhigang Song ◽  
...  

Abstract Glucocorticoids (GCs) induce the activation of the central adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway in birds. In this study, we aimed to investigate the effects of corticosterone (CORT) supplemented in diet on the central AMPK signaling pathway in broilers. The average daily gain was reduced by CORT treatment, and the average daily feed intake remained unchanged. Plasma glucose, triglyceride, total cholesterol, and CORT contents were increased by CORT administration. In addition, CORT treatment decreased the relative weights of heart, spleen, and bursa and increased the relative weights of liver and abdominal fat. The glycogen contents in the liver and breast muscle were higher in the chicks treated with CORT. CORT treatment upregulated the gene expression of mammalian target of rapamycin, glucocorticoid receptor, AMPKα2, neuropeptide Y(NPY), liver kinase B1 (LKB1), AMPKα1, and fatty acid synthase in the hypothalamus. Moreover, CORT treatment increased the protein levels of acetyl-coenzyme A carboxylase (ACC) phosphorylation and total AMPK and phosphorylated AMPK in the hypothalamus. Hence, CORT administration in the diet activated the LKB1-AMPK-NPY/ACC signaling pathway in the hypothalamus of broiler.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Gang Ning ◽  
Yan-Lin Huang ◽  
Li-Min Zhen ◽  
Wen-Xiong Xu ◽  
Xue-Jun Li ◽  
...  

Background. Single nucleotide polymorphism (SNP) of complement component 2 (C2) has been found to be significantly associated with hepatocellular carcinoma (HCC). However, little is known about the role and mechanism of C2 in HCC. In the present study, we aimed to explore the prognostic value of C2 and its correlation with tumor-infiltrating immune cells in HCC. Materials and Methods. mRNA expression was downloaded from TCGA (365 HCC patients and 50 healthy controls), GSE14520 (220 HCC patients and 220 adjacent normal tissues), and ICGC HCC (232 HCC patients) cohorts. Unpaired Student’s t-tests or ANOVA tests were used to evaluate differences of C2 expression. Univariate and multivariate analyses were used to analyze the prognostic value of C2. CIBERSORT was used to calculate the proportion of 22 kinds of tumor-infiltrating immune cells. Results. Significantly lower C2 expression was found at HCC compared to healthy controls, and C2 was associated with TNM stages. Higher C2 expression was significantly associated with better prognosis, and multivariate analysis showed that C2 was also an independent factor for the prognosis of HCC. Moreover, elevated CD4 T cells were found at HCC patients with higher C2 expression while the higher proportion of macrophage M0 cells was found in HCC patients with lower C2 expression. KEGG analysis showed that “cell cycle,” “AMPK signaling pathway,” and “PPAR signaling pathway” were enriched in HCC patients with higher C2 expression. Conclusion. C2 is a prognostic factor for HCC and may be used as a therapeutic target for future treatment of HCC.


Author(s):  
Huijie Gu ◽  
Zhongyue Huang ◽  
Kaifeng Zhou ◽  
Guangnan Chen ◽  
Chong Bian ◽  
...  

Osteoporosis (OP) has the characteristics of a systematically impaired bone mass, strength, and microstructure. Long non-coding RNAs (lncRNAs) are longer than 200 nt, and their functions in osteoporosis is yet not completely understood. We first harvested the bone marrow mesenchymal stem cells (BMSCs) from ovariectomy (OVX) and sham mice. Then, we systematically analyzed the differential expressions of lncRNAs and messenger RNAs (mRNAs) and constructed lncRNA–mRNA coexpression network in order to identify the function of lncRNA in osteoporosis. Totally, we screened 743 lncRNAs (461 upregulated lncRNAs and 282 downregulated lncRNAs) and 240 mRNAs (128 upregulated and 112 downregulated) with significantly differential expressions in OP compared to normal. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses to investigate the functions and pathways of the differential expression of messenger RNAs (mRNAs), a coexpressed network of lncRNA/mRNA. Quantitative PCR (qPCR) validated that the expressions of NONMMUT096150.1, NONMMUT083450.1, and NONMMUT029743.2 were all downregulated, whereas NONMMUT026970.2, NONMMUT051734.2, NONMMUT003617.2, and NONMMUT034049.2 were all upregulated in the OVX group. NONMMUT096150.1, as a key lncRNA in OP, was identified to modulate the adipogenesis of BMSCs. Further analysis suggested that NONMMUT096150.1 might modulate the adipogenesis of BMSCs via the peroxisome proliferator-activated receptor (PPAR) signaling pathway, AMPK signaling pathway, and the lipolysis regulation in adipocyte and adipocytokine signaling pathway. Our study expands the understanding of lncRNA in the pathogenesis of OP.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takumi Kayukawa ◽  
Kenjiro Furuta ◽  
Keisuke Nagamine ◽  
Tetsuro Shinoda ◽  
Kiyoaki Yonesu ◽  
...  

Abstract Insecticide resistance has recently become a serious problem in the agricultural field. Development of insecticides with new mechanisms of action is essential to overcome this limitation. Juvenile hormone (JH) is an insect-specific hormone that plays key roles in maintaining the larval stage of insects. Hence, JH signaling pathway is considered a suitable target in the development of novel insecticides; however, only a few JH signaling inhibitors (JHSIs) have been reported, and no practical JHSIs have been developed. Here, we established a high-throughput screening (HTS) system for exploration of novel JHSIs using a Bombyx mori cell line (BmN_JF&AR cells) and carried out a large-scale screening in this cell line using a chemical library. The four-step HTS yielded 69 compounds as candidate JHSIs. Topical application of JHSI48 to B. mori larvae caused precocious metamorphosis. In ex vivo culture of the epidermis, JHSI48 suppressed the expression of the Krüppel homolog 1 gene, which is directly activated by JH-liganded receptor. Moreover, JHSI48 caused a parallel rightward shift in the JH response curve, suggesting that JHSI48 possesses a competitive antagonist-like activity. Thus, large-scale HTS using chemical libraries may have applications in development of future insecticides targeting the JH signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document