scholarly journals Anti-endometriotic Effects of Ceratonia Siliqua L. Pod on Endometrial Mesenchymal Stromal/stem Cells Isolated from Women with Endometriosis-associated Infertility

Author(s):  
Zahra Khodabandeh ◽  
Bahia Namavar Jahromi ◽  
Atefe Hashemi ◽  
Alireza Afshar ◽  
Neda Baghban ◽  
...  

Abstract This study investigated the effects of carob (Ceratonia siliqua L.) pod extract (CPE) on human endometrial stem cells (ESCs) viability and to examine its impact on mRNA expression of methyltransferase (DNMT-1, DNMT-3A and DNMT-3B), histone deacetylase-1 (HDAC-1), matrix metalloproteinase-2 (MMP-2) and cyclooxygenase-2 (COX-2) in endometriotic patients. The ESCs were derived from endometrium of patients with endometrioma (OMA-ESCs) and deep infiltrative endometriosis samples of 10 women with endometriosis associated infertility (E-ESCs) were compared to the ESCs derived from endometrium of endometriosis free, normal women as control group (C-ESCs). The metabolic activity of control and case groups was evaluated by treating them with different concentrations of CPE. In the E-ESCs, treatment with 0.8 and 2 µg/mL of CPE resulted in downregulation of COX-2 and HDAC-1 compared to the control group (p = 0.02 and p = 0.02, respectively). Treatment with 0.8 µg/mL of CPE decreased MMP-2 and DNMT-3B genes expression (p = 0.02 and p = 0.03, respectively). Furthermore, COX-2 and DNMT-3A genes were significantly upregulated after treatment with 2 µg/mL of CPE. Expression of the COX-2, HDAC-1, DNMT-1, DNMT-3A, and DNMT-3B peptides decreased in E-ESCs, OMA-ESCs and C-ESCs after treatment with 0.8 and 2 µg/mL concentrations of the CPE. The GC analysis of the CPE resulted in 14 compounds with interactions with the target proteins through the docking process. In vitro CPE treatment significantly downregulated cell inflammatory pathway involved in the pathophysiology of endometriosis and may be a potential agent for treatment of endometriosis.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2019 ◽  
Vol 12 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Erma Safitri ◽  
Mas'ud Hariadi

Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.


Reproduction ◽  
2020 ◽  
Vol 159 (5) ◽  
pp. 549-558 ◽  
Author(s):  
Saba Hajazimian ◽  
Masoud Maleki ◽  
Shahla Danaei Mehrabad ◽  
Alireza Isazadeh

Endometriosis is a relatively benign disease characterized by endometrial tumors and uterus stroma. Apoptosis suppression is one of the most important pathological processes of endometriosis. Recently, several studies reported that human Wharton’s jelly stem cells (hWJSCs) can inhibit growth and proliferation of various cancer cells through induction of apoptosis. Therefore, the aim of the present study was to investigate the effects of hWJSCs conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) on endometriosis cells in vitro. In the present study, effects of different concentrations of hWJSC-CM and hWJSC-CL on viability and proliferation, morphological alterations, colony formation, migration, invasion, and apoptosis of endometriosis cells were evaluated. Our results showed that hWJSC-CM and hWJSC-CL decrease viability and proliferation, colony formation, migration, and invasion, as well as increase morphological alterations and apoptosis of endometriosis cells, in a concentration- and time-dependent manner. Decreased migration and invasion of treated endometriosis cells with hWJSC-CM and hWJSC-CL may be due to decrease of MMP-2 and MMP-9 gene expression. Moreover, induction of apoptosis in treated endometriosis cells can be due to regulation of apoptosis-related genes expression, including BAX, BCL-2, SMAC, and SURVIVIN. The results of the present study suggest that hWJSC-CM and hWJSC-CL can inhibit endometriosis cells at a mild-to-moderate level through various physiological mechanisms. However, further studies on animal models are necessary to achieve more accurate results.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Chen ◽  
Yi Wu ◽  
Yanling Wang ◽  
Lijun Chen ◽  
Wendi Zheng ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis is a kind of diffuse interstitial lung disease, the pathogenesis of which is unclear, and there is currently a lack of good treatment to improve the survival rate. Human menstrual blood-derived mesenchymal stem cells (MenSCs) have shown great potential in regenerative medicine. This study aimed to explore the therapeutic potential of MenSCs for bleomycin-induced pulmonary fibrosis. Methods We investigated the transplantation of MenSCs in a pulmonary fibrosis mouse model induced by BLM. Mouse was divided into three groups: control group, BLM group, MenSC group. Twenty-one days after MenSC transplantation, we examined collagen content, pathological, fibrosis area in the lung tissue, and the level of inflammatory factors of serum. RNA sequence was used to examine the differential expressed gene between three groups. Transwell coculture experiments were further used to examine the function of MenSCs to MLE-12 cells and mouse lung fibroblasts (MLFs) in vitro. Results We observed that transplantation of MenSCs significantly improves pulmonary fibrosis mouse through evaluations of pathological lesions, collagen deposition, and inflammation. Transwell coculturing experiments showed that MenSCs suppress the proliferation and the differentiation of MLFs and inhibit the apoptosis of MLE-12 cells. Furthermore, antibody array results demonstrated that MenSCs inhibit the apoptosis of MLE-12 cells by suppressing the expression of inflammatory-related cytokines, including RANTES, Eotaxin, GM-CSF, MIP-1γ, MCP-5, CCL1, and GITR. Conclusions Collectively, our results suggested MenSCs have a great potential in the treatment of pulmonary fibrosis, and cytokines revealed in antibody array are expected to become the target of future therapy of MenSCs in clinical treatment of pulmonary fibrosis.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 304 ◽  
Author(s):  
Sara Abidar ◽  
Razvan Boiangiu ◽  
Gabriela Dumitru ◽  
Elena Todirascu-Ciornea ◽  
Amina Amakran ◽  
...  

Ceratonia siliqua L. is a Mediterranean medicinal plant traditionally cultivated for its ethnopharmacological benefits, such as antidiarrheal, antidiabetic, enhance acetylcholine, antioxidant, antiatherosclerotic, and for its possible anti-neurodegenerative potential. The aim of the present study was to evaluate the chemical composition, as well as the cognitive-enhancing, anxiolytic, and antioxidant activities of the aqueous extract from C. siliqua (CsAE) leaves against 6-hydroxydopamine (6-OHDA) zebrafish Parkinson’s disease (PD) model. CsAE (0.1, 0.3, and 1 mg/L) was administered by immersion to zebrafish (Danio rerio) for eight consecutive days and one hour before each behavioral test of each day, while 6-OHDA (250 µM) treatment was supplied one day before the novel tank diving test (NTT). Qualitative and quantitative analyses were performed by the ultra-high-performance liquid chromatography (UHPLC) analysis. The memory performance was evaluated through the NTT and Y-maze tests. Additionally, the in vitro and in vivo antioxidant status and acetylcholinesterase (AChE) activity was also assessed. Our finds demonstrated that CsAE presented positive antioxidant and anti-AChE activities, which contributed to the improvement of cognitive function in the 6-OHDA zebrafish PD model.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 4055-4063 ◽  
Author(s):  
Christian Ries ◽  
Virginia Egea ◽  
Marisa Karow ◽  
Helmut Kolb ◽  
Marianne Jochum ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) represent promising tools in various clinical applications, including the regeneration of injured tissues by endogenous or transplanted hMSCs. The molecular mechanisms, however, that control hMSC mobilization and homing which require invasion through extracellular matrix (ECM) barriers are almost unknown. We have analyzed bone marrow–derivedhMSCs and detected strong expression and synthesis of matrix metalloproteinase 2 (MMP-2), membrane type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2. The ability of hMSCs to traverse reconstituted human basement membranes was effectively blocked in the presence of synthetic MMP inhibitors. Detailed studies by RNA interference revealed that gene knock-down of MMP-2, MT1-MMP, or TIMP-2 substantially impaired hMSC invasion, whereas silencing of TIMP-1 enhanced cell migration, indicating opposing roles of both TIMPs in this process. Moreover, the inflammatory cytokines TGF-β1, IL-1β, and TNF-α up-regulated MMP-2, MT1-MMP, and/or MMP-9 production in these cells, resulting in a strong stimulation of chemotactic migration through ECM, whereas the chemokine SDF-1α exhibited minor effects on MMP/TIMP expression and cell invasion. Thus, induction of specific MMP activity in hMSCs by inflammatory cytokines promotes directed cell migration across reconstituted basement membranes in vitro providing a potential mechanism in hMSC recruitment and extravasation into injured tissues in vivo.


2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
M. M. Souza ◽  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
T. A. D. Tetzner-Nanzeri ◽  
R. Vantini ◽  
...  

The use of fetal bovine serum (FBS) as protein supplementation in IVP of bovine embryos has presented difficulties because it can introduce a number of pathogenic components in culture systems, can be related to the birth of calf with abnormal growth and development, and precludes the establishment of the actual nutritional needs of the embryo, because it contains an unlimited variety of substances. This study evaluated the replacement of the FBS in the medium of in vitro culture (IVC) of bovine embryos, using the knockout serum replacer (KSR) as protein supplementation and culture medium conditioned with stem cells. Therefore, bovine oocytes from ovaries of slaughterhouse were selected and matured in vitro in TCM-199 medium supplemented with 10% FBS (Crypion), 1.0 μg mL-1 FSH (Pluset®, Calier, Barcelona, Spain), 50 μg mL-1 hCG (Profasi®, Serono, Geneva, Switzerland), 1.0 μg mL-1 estradiol (Sigma E-2758, Sigma Chemical, St. Louis, MO, USA), 0.2 mM sodium pyruvate, and 83.4 μg mL-1 amikacin for 24 h. After that, 1144 oocytes were fertilized in IVF-TALP medium containing 6 mg mL-1 of BSA. After 18 to 22 h, the zygotes were cultured in SOF + 5% FBS (group 2); SOF + 5% KSR (group 3); SOF (5% FBS) + 10% SOF (5% FBS) conditioned by stem cells (group 4); or SOF (5% KSR) + 10% SOF (5% KSR) conditioned by stem cells (group 5), in an atmosphere of 5% O2 at 38.5°C for 8 days. A control group outside the controlled atmosphere was added, supplemented with 5% FBS (group 1). The SOF medium supplemented with 5% FBS or KSR was conditioned by stem cells and added to SOF medium for the culture of embryo at a concentration of 10%. The rates of cleavage and production of blastocysts were assessed 48 hours and 7 days after IVF, respectively, and analyzed by chi-square test, with a significance level of 5% in the statistical program Minitab® (release 14.1, Minitab, State College, PA, USA). On the eighth day, the TUNEL test for determination of the percentage of apoptosis and the differential staining technique for determination of inner cell mass (ICM) and trophoblast (TF) were performed. The results were submitted to ANOVA, followed by comparing the means by Tukey’s test using the program GraphPad Prism (GraphPad, San Diego, CA, USA). The treatments did not differ in the production of embryos, being similar to the control group: G1 = 31.75% (74/233), G2 = 35.26% (79/224), G3 = 32.70% (74/226), G4 = 28.76% (63/219), and G5 = 26.85% (65/242). With regard to the assessment of embryonic quality, the treatments showed similar results to the control groups. No differences were observed among groups both in color and ICM/TF ratio (G1 = 0.60, G2 = 0.62, G3 =0.65, G4 = 0.60, and G5 = 0.60). Furthermore, the TUNEL showed no significant difference in the percentage of apoptosis among groups (G1 = 7.10%, G2 = 3.76%, G3 = 5.58%, G4 = 4.50%, and G5 = 4.11%). The data obtained so far indicate that it is possible to produce embryos in vitro by replacing the FBS in the culture, achieving results similar to those obtained with serum. Financial support: FAPESP 2007/58506-6.


2010 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
Y. J. Kim ◽  
K. S. Ahn ◽  
M. J. Kim ◽  
H. Shim

Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer embryos. Such modification includes an increase of histone acetylation and a decrease of DNA methylation in transferred donor nuclei. Histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) and valproic acid (VPA) have been known to maintain high cellular levels of histone acetylation. Hence, the treatment of HDACi to NT embryos may increase efficiency of cloning. Indeed, TSA treatment has significantly enhanced the developmental competence of nuclear transfer embryos in several species including pigs (Zhang et al. 2007 Cloning Stem Cells 9, 357-363; Li et al. 2008 Theriogenology 70, 800-808). Valproic acid, another type of HDACi, has often been used to assist reprogramming of somatic cells into induced pluripotent stem cells in mice. In the present study, we tested the potency of VPA compared with TSA on the enhancement of in vitro development in porcine nuclear transfer embryos. Reconstructed embryos were produced by transferring nuclei of adult ear skin fibroblasts into enucleated oocytes. After electrical activation, these embryos were cultured in PZM-3 containing no HDACi (control), 5 mM VPA, or 50 nM TSA for 24 h, and another 5 days thereafter without HDACi. At least 3 replicates were conducted for the following experiments. The rates of cleavage were not different among the VPA, TSA, and control groups. However, the rate of blastocyst development was significantly higher (P < 0.05) in embryos treated with VPA than in those treated with TSA and without HDACi (125/306, 40.8% v. 94/313, 30.0% v. 80/329, 24.3%). Differential staining of inner cell mass (ICM) and trophectoderm (TE) also supported the beneficial effect of VPA treatment in NT embryos. Compared with the control group, the number of TE cells was significantly increased (P < 0.05) in the VPA and TSA treatment groups (79.3 ± 7.4 v. 74.6 ± 9.2 v. 40.0 ± 6.7). Moreover, VPA treatment significantly increased (P < 0.05) the number of ICM cells compared with the control (15.6 ± 1.7 v. 10.8 ± 2.6), whereas no differences were observed between the TSA treatment and control group (12.9 ± 3.0 v. 10.8 ± 2.6). The present study demonstrates that VPA enhances in vitro development of nuclear transfer embryos, in particular by an increase of blastocyst formation and the number of ICM cells, suggesting that VPA may be more potent than TSA in supporting developmental competence of cloned embryos. However, long-term effects of different HDACi in the development of nuclear transfer embryos, including any adverse outcome from destabilizing epigenetic condition, remain to be determined by further in vivo embryo transfer studies.


2019 ◽  
Vol 47 (7) ◽  
pp. 3261-3270
Author(s):  
Cheng Wang ◽  
Qiaohui Liu ◽  
Xiaoyuan Ma ◽  
Guofeng Dai

Objective To measure the inductive effect of kartogenin on matrix metalloproteinase-2 levels during the differentiation of human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes in vitro. Methods In vitro cultured bone marrow hMSCs were grown to the logarithmic phase and then divided into three groups: control group (0 µM kartogenin), 1 µM kartogenin group and 10 µM kartogenin group. After 72 h of culture, cell proliferation and differentiation were observed microscopically. Matrix metalloproteinase-2 (MMP-2) in the cell supernatant and type II collagen levels in the cells were detected by enzyme linked immunosorbent assay and immunofluorescence staining, respectively. Results Kartogenin induced the proliferation and differentiation of hMSCs. With the increase of kartogenin concentration, the level of type II collagen was increased, while the level of MMP-2 decreased. Conclusion These findings indicate that kartogenin can induce hMSCs to differentiate into chondrocytes, and with the increase of kartogenin concentration, degeneration of the cartilage extracellular matrix may be inhibited.


Author(s):  
Lizhi Han ◽  
Song Gong ◽  
Ruoyu Wang ◽  
Shaokai Liu ◽  
Bo Wang ◽  
...  

Steroid-induced osteonecrosis of femoral head (SONFH) is a common and serious complication caused by long-term and/or excessive use of glucocorticoids (GCs). The decreased activity and abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the major reasons for the onset and progression of this disease. Periostin (POSTN) is a matricellular protein which plays an important role in regulating osteoblast function and bone formation. Sclerostin (SOST) is a secreted antagonist of Wnt signaling that is mainly expressed in osteocytes to inhibit bone formation. However, the exact role of POSTN and SOST in SONFH has not been reported yet. Therefore, we detected the differential expression of POSTN and SOST in BMSCs of SONFH Group patients, and Control Group was patients with traumatic ONFH (TONFH) and developmental dysplasia of the hip (DDH). Furthermore, we used lentiviral transfection to knockdown POSTN expression in BMSCs of patients with SONFH to study the effect of POSTN knockdown on the SOST expression and osteogenic differentiation of BMSCs. The results indicated that the endogenous expression of POSTN and SOST in BMSCs of SONFH Group was upregulated, compared with Control Group. POSTN was upregulated gradually while SOST was downregulated gradually at days 0, 3, and 7 of osteogenic differentiation of BMSCs in Control Group. Contrarily, POSTN was gradually downregulated while SOST was gradually upregulated during osteogenic differentiation of BMSCs in SONFH Group. This could be due to increased expression of SOST in BMSCs, which was caused by excessive GCs. In turn, the increased expression of POSTN in BMSCs may play a role in antagonizing the continuous rising of SOST during the osteogenic differentiation of BMSCs in patients with SONFH. POSTN knockdown significantly attenuated osteo-specific gene expression, alkaline phosphatase activity, and calcium nodule formation in vitro; thus inhibiting the osteogenic differentiation of BMSCs in patients with SONFH. Besides, POSTN knockdown upregulated SOST expression, increased GSK-3β activity, and downregulated β-catenin. These findings suggest that POSTN have an essential role in regulating the expression of SOST and osteogenic differentiation of BMSCs in patients with SONFH, and POSTN knockdown suppresses osteogenic differentiation by upregulating SOST and partially inactivating Wnt/β-catenin signaling pathway. Therefore, targeting POSTN and SOST may serve as a promising therapeutic target for the prevention and treatment of SONFH.


Sign in / Sign up

Export Citation Format

Share Document