scholarly journals PH Controlled the Supramolecular Assemblies of Two  Guanosine Monophosphate Cadmium Metal Coordination Complexes: Structure and Chirality

Author(s):  
Muhammad Javed Iqbal ◽  
Zhongkui Li ◽  
Maroof Ahmad Khan ◽  
Wajid Hussain ◽  
Muhammad Sohail Riaz ◽  
...  

Abstract In biological systems Chirality is important property from small molecules to macromolecules. The construction of homochiral coordination supramolecules in crystal and helical delivers the connection of molecular and macromolecular chirality. Complexity and properties in the presence of cadmium ion and bpe auxiliary ligand for bio-molecular guanosine-5- monophosphate disodium salt (GMP) was studied. The two Complexes 1 and 2 have been investigated the impact of auxiliary ligand bpe, hydroxy group on the sugar motif and pH for coordination of GMP ligands. The interaction of mixed ligands for growth and advancement of chiral complexes was controlled by the alteration of pH values for coordination of guanosine-5-monophosphate nucleotide with cadmium Cd (II) metal. The chirality of complexes 1 and 2 was studied with solid circular dichroism (CD) spectroscopy, including supramolecular chirality and extended auxiliary ligand (EAC) combining with the crystal structure analysis. The various hydrogen bonding and auxiliary ligand are the special means of transporting chirality from isolated molecules to dynamic supramolecular three-dimensional designs of GMP nucleotide crystals. The research results will be benefit to the controlling supramolecular assembly with well-defined structure and properties.

2021 ◽  
Vol 118 (26) ◽  
pp. e2023749118
Author(s):  
Stefan Andreas Zambach ◽  
Changsi Cai ◽  
Hans Christian Cederberg Helms ◽  
Bjørn Olav Hald ◽  
Yiqiu Dong ◽  
...  

Rises in local neural activity trigger local increases of cerebral blood flow, which is essential to match local energy demands. However, the specific location of microvascular flow control is incompletely understood. Here, we used two-photon microscopy to observe brain microvasculature in vivo. Small spatial movement of a three-dimensional (3D) vasculature makes it challenging to precisely measure vessel diameter at a single x–y plane. To overcome this problem, we carried out four-dimensional (x–y–z–t) imaging of brain microvessels during exposure to vasoactive molecules in order to constrain the impact of brain movements on the recordings. We demonstrate that rises in synaptic activity, acetylcholine, nitric oxide, cyclic guanosine monophosphate, ATP-sensitive potassium channels, and endothelin-1 exert far greater effects on brain precapillary sphincters and first-order capillaries than on penetrating arterioles or downstream capillaries, but with similar kinetics. The high level of responsiveness at precapillary sphincters and first-order capillaries was matched by a higher level of α-smooth muscle actin in pericytes as compared to penetrating arterioles and downstream capillaries. Mathematical modeling based on 3D vasculature reconstruction showed that precapillary sphincters predominantly regulate capillary blood flow and pressure as compared to penetrating arterioles and downstream capillaries. Our results confirm a key role for precapillary sphincters and pericytes on first-order capillaries as sensors and effectors of endothelium- or brain-derived vascular signals.


Author(s):  
A. F. Marshall ◽  
J. W. Steeds ◽  
D. Bouchet ◽  
S. L. Shinde ◽  
R. G. Walmsley

Convergent beam electron diffraction is a powerful technique for determining the crystal structure of a material in TEM. In this paper we have applied it to the study of the intermetallic phases in the Cu-rich end of the Cu-Zr system. These phases are highly ordered. Their composition and structure has been previously studied by microprobe and x-ray diffraction with sometimes conflicting results.The crystalline phases were obtained by annealing amorphous sputter-deposited Cu-Zr. Specimens were thinned for TEM by ion milling and observed in a Philips EM 400. Due to the large unit cells involved, a small convergence angle of diffraction was used; however, the three-dimensional lattice and symmetry information of convergent beam microdiffraction patterns is still present. The results are as follows:1) 21 at% Zr in Cu: annealed at 500°C for 5 hours. An intermetallic phase, Cu3.6Zr (21.7% Zr), space group P6/m has been proposed near this composition (2). The major phase of our annealed material was hexagonal with a point group determined as 6/m.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Francesco Rizzetto ◽  
Francesca Calderoni ◽  
Cristina De Mattia ◽  
Arianna Defeudis ◽  
Valentina Giannini ◽  
...  

Abstract Background Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs). Methods After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs) and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image used for the 2D ROI. Results The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient (median 0.85, interquartile range 0.78–0.89) and Hausdorff distance (0.21 mm, 0.14–0.31 mm). Comparing RF values, MRC ranged 0–752% for 2D and 0–1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D. An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a variability between 2D and circular ROIs higher than inter-reader variability. Conclusions A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs can be extracted from both 3D and 2D segmentations of CRC liver metastases.


2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.


2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Ahmed Allali ◽  
Sadia Belbachir ◽  
Ahmed Alami ◽  
Belhadj Boucham ◽  
Abdelkader Lousdad

AbstractThe objective of this work lies in the three-dimensional study of the thermo mechanical behavior of a blade of a centrifugal compressor. Numerical modeling is performed on the computational code "ABAQUS" based on the finite element method. The aim is to study the impact of the change of types of blades, which are defined as a function of wheel output angle β2, on the stress fields and displacements coupled with the variation of the temperature.This coupling defines in a realistic way the thermo mechanical behavior of the blade where one can note the important concentrations of stresses and displacements in the different zones of its complex form as well as the effects at the edges. It will then be possible to prevent damage and cracks in the blades of the centrifugal compressor leading to its failure which can be caused by the thermal or mechanical fatigue of the material with which the wheel is manufactured.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy E. Alexander ◽  
Nicole Wake ◽  
Leonid Chepelev ◽  
Philipp Brantner ◽  
Justin Ryan ◽  
...  

AbstractFirst patented in 1986, three-dimensional (3D) printing, also known as additive manufacturing or rapid prototyping, now encompasses a variety of distinct technology types where material is deposited, joined, or solidified layer by layer to create a physical object from a digital file. As 3D printing technologies continue to evolve, and as more manuscripts describing these technologies are published in the medical literature, it is imperative that standardized terminology for 3D printing is utilized. The purpose of this manuscript is to provide recommendations for standardized lexicons for 3D printing technologies described in the medical literature. For all 3D printing methods, standard general ISO/ASTM terms for 3D printing should be utilized. Additional, non-standard terms should be included to facilitate communication and reproducibility when the ISO/ASTM terms are insufficient in describing expository details. By aligning to these guidelines, the use of uniform terms for 3D printing and the associated technologies will lead to improved clarity and reproducibility of published work which will ultimately increase the impact of publications, facilitate quality improvement, and promote the dissemination and adoption of 3D printing in the medical community.


Author(s):  
Elise Henry ◽  
Angelo Furno ◽  
Nour-Eddin El Faouzi

Transport networks are essential for societies. Their proper operation has to be preserved to face any perturbation or disruption. It is therefore of paramount importance that the modeling and quantification of the resilience of such networks are addressed to ensure an acceptable level of service even in the presence of disruptions. The paper aims at characterizing network resilience through weighted degree centrality. To do so, a real dataset issued from probe vehicle data is used to weight the graph by the traffic load. In particular, a set of disrupted situations retrieved from the study dataset is analyzed to quantify the impact on network operations. Results demonstrate the ability of the proposed metrics to capture traffic dynamics as well as their utility for quantifying the resilience of the network. The proposed methodology combines different metrics from the complex networks theory (i.e., heterogeneity, density, and symmetry) computed on temporal and weighted graphs. Time-varying traffic conditions and disruptions are analyzed by providing relevant insights on the network states via three-dimensional maps.


Sign in / Sign up

Export Citation Format

Share Document