scholarly journals Multiple Beneficial Effects of Using Biochar (as a Great Organic Material) on Tolerance and Productivity of Rice under Abiotic Stress

2019 ◽  
Vol 6 (1) ◽  
pp. 40-51
Author(s):  
Gulaqa Anwari ◽  
Jin Feng ◽  
Abdourazak Alio Moussa

Rice as a sensitive crop that usually affected by many harmful environmental stresses. Numerous policies are followed to increase plant growth-tolerance under abiotic-stresses in various plant species. The attempts to improve crop tolerance against abiotic stresses via common breeding method are needed to follow a long-term, and may also be non-affordable, these are due to the existing genetic variability of the plant. Current review analysis existing knowledge gaps, challenges, and opportunities in the biochar application as a beneficial and pyrogenic-C, material. Consequently, a review of the literature with a high focusing on the multiple beneficial effects of using biochar on tolerance and productivity of rice in abiotic stresses is needed. This review provides a summary of those efforts that would be beneficial in reducing inconvenienced abiotic-stresses, and also how using biochar could increase rice tolerance and production through the supporting of plant growth regulator's roles. Accordantly, present review findings showed that biochar is a great amendment and consisting of principally organic rich-C matter, which has multiple benefits on improving soil physicochemical and biological properties as well as increasing rice tolerance and its productivity through enhancing plant hormones roles under abiotic stressed conditions (heat/cold temperature, drought, salinity, heavy metal, and climate change stresses). Nevertheless, it is anticipated that further researches on the benefits of biochar will increase the comprehension of interactions between biochar and plant growth hormones, to accelerate our attempts for improving rice tolerance and productivity, under abiotic-stress conditions.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


2021 ◽  
Vol 3 ◽  
Author(s):  
Michael Prabhu Inbaraj

Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1514
Author(s):  
Carlo Andreotti

Horticultural crops are currently exposed to multiple abiotic stresses because of ongoing climate change. Abiotic stresses such as drought, extreme temperatures, salinity, and nutrient deficiencies are causing increasing losses in terms of yield and product quality. The horticultural sector is therefore searching for innovative and sustainable agronomic tools to enhance crop tolerance towards these unfavorable conditions. In a recent review published in Agronomy, “Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions”, Bulgari and colleagues discussed the main pieces of evidence of the use of biostimulants to manage abiotic stresses in vegetable crops. The intent of this editorial was to focus the attention on aspects related to the stress development in plants (i.e., timing and occurrence of multiple stress factors), in combination with the application of biostimulants. The large number of factors potentially involved in the enhancement of crop tolerance toward stress calls for an intensification of research activities, especially when conducted in field conditions and with well-defined protocols. This must be seen as a mandatory task for a successful implementation of biostimulant products among the available agronomic tools for the management of abiotic stresses in horticultural crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saima Aslam ◽  
Nadia Gul ◽  
Mudasir A. Mir ◽  
Mohd. Asgher ◽  
Nadiah Al-Sulami ◽  
...  

Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.


2021 ◽  
Vol 14 (2) ◽  
pp. 5-18
Author(s):  
I. V. Kosakivska ◽  

Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics. Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants. Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.


2018 ◽  
Vol 15 (2) ◽  
pp. 485-494 ◽  
Author(s):  
K. Damodara Chari ◽  
R. Subhash Reddy ◽  
S. Triveni ◽  
N. Trimurtulu ◽  
CH. V. Durga Rani ◽  
...  

Present investigation was carried out to identify plant growth promoting rhizobacterial isolates for abiotic stress tolerance. To achieve this bacterial isolates were isolated from different rhizospheric soils of Telanagana and screened for plant growth promoting properties and tolerance to different abiotic stresses such as pH, temperature, salt, drought and heavy metals. Such PGPR will be helpful for efficient management of abiotic stresses in crop production. Rhizospheric soils from normal, salt affected, drought affected and bulk soils were collected from different places of Telangana state. From all soil samples, based on cultural, morphological and biochemical characterization it was found that forty four were of Bacillus spp. Among the forty four (44) Bacillus isolates, twenty eight (28) isolates were showing plant growth promoting properties. These positive isolates tested for abiotic stress tolerance to pH, temperature, salt, drought and heavy metals (As and Cd). Four isolates were showed growth at pH range from 4-12 (BS 1, BS 3, BS 14, BS 18), five isolates were showed tolerance to 1.5 to 20 % of NaCl concentration (BS 1, BS 3, BS 14, BS 18, BS 42, six isolates showed tolerance to temperature from 20ºC -50ºC (BS 10, BS 14, BS 18, BS 27, BS 37, BS 43), four isolates showed tolerance to water potential from - 0.05 Mpa to- 0.73 Mpa (BS 4, BS 10, BS 18, BS 33).


2020 ◽  
Vol 1 (1) ◽  
pp. 21-30
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Biotic, abiotic stresses and their unpredictable combinations severely reduce plant growth and crop yield worldwide. The different chemicals (pesticides, fertilizers, phytoregulators) so far used to enhance crop tolerance to multistress have a great environmental impact. In the search of more eco-friendly systems to manage plant stresses, chitin, a polysaccharide polymer composed of N-acetyl-D-glucosamine and D-glucosamine and its deacetylated derivative chitosan appear as promising tools to solve this problem. In fact, these molecules, easily obtainable from crustacean shells and from the cell wall of many fungi, are non-toxic, biodegradable, biocompatible and able to stimulate plant productivity and to protect crops against pathogens. In addition, chitin and chitosan can act as bioadsorbents for remediation of contaminated soil and water. In this review we summarize recent results obtained using chitin- and chitosan-based derivatives in plant protection against biotic and abiotic stresses and in recovery of contaminated soil and water.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 337
Author(s):  
Rafael J. L. Morcillo ◽  
Maximino Manzanera

Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 764
Author(s):  
Minh Thi Thanh Hoang ◽  
Mai Thi Anh Doan ◽  
Thuong Nguyen ◽  
Dong-Phuong Tra ◽  
Thanh Nguyen Chu ◽  
...  

Ascorbic acid (AsA) and glutathione (GSH) are considered important factors to protect plants against abiotic stress. To investigate whether altered endogenous GSH and AsA affect seed germination, plant performance and the abiotic stress tolerance, GSH deficient mutant cad2-1 and AsA-deficient mutants (vtc2-4 and vtc5-2) were phenotypically characterized for their seed germination, shoot growth, photosynthetic activity and root architecture under abiotic stresses. The cad2-1, vtc2-4 and vtc5-2 mutants showed a decrease in osmotic and salt stress tolerance, in sensitivity to ABA during seed germination, and in plant performance under severe abiotic stresses. GSH deficiency in the cad2-1 plants affected plant growth and root development in plants exposed to strong drought, oxidative and heavy metal stress conditions. Plants with lower GSH did not show an increased sensitivity to strong salt stress (100 mM NaCl). In contrast, the mutants with lower AsA enhanced salt stress tolerance in the long-term exposures to strong salt stress since they showed larger leaf areas, longer primary roots and more lateral root numbers. Limitations on AsA or GSH synthesis had no effect on photosynthesis in plants exposed to long-term strong salt or drought stresses, whereas they effected on photosynthesis of mutants exposed to CdCl2. Taken together, the current study suggests that AsA and GSH are important for seed germination, root architecture, shoot growth and plant performance in response to different abiotic stresses, and their functions are dependent on the stress-inducing agents and the stress levels.


Sign in / Sign up

Export Citation Format

Share Document