scholarly journals Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions

2016 ◽  
Vol 73 (9) ◽  
pp. 2168-2175 ◽  
Author(s):  
N. Mpongwana ◽  
S. K. O. Ntwampe ◽  
L. Mekuto ◽  
E. A. Akinpelu ◽  
S. Dyantyi ◽  
...  

Cyanides (CN−) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH4-N in the presence of 65.91 mg/L of free cyanide (CN−) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH4-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h−1 (I), 4.21 h−1 (H) and 3.79 h−1 (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

1986 ◽  
Vol 18 (7-8) ◽  
pp. 289-296
Author(s):  
C. F. Ouyang ◽  
T. J. Wan

This study investigated and compared the treatment characteristics of three different kinds of biological wastewater treatment plants (including rotating biological contactor, trickling filter and oxidation ditch) which are currently operated in Taiwan. The field investigation of this study concentrated on the following items: the performance of biological oxygen demand (BOD) and suspended solids (SS) removal; the sludge yield rate of BOD removal; the settleability of sludge solids; the properties of sludge thickening; the power consumption and land area requirement per unit volume of wastewater. Finally, based on the results of the field investigation, a comparison of the treatment characteristics of the three different biological treatment processes was evaluated.


2013 ◽  
Vol 68 (9) ◽  
pp. 1994-1999 ◽  
Author(s):  
Muhammad Umar ◽  
Felicity Roddick ◽  
Linhua Fan

The UVC/H2O2 process was studied at laboratory scale for the treatment of one moderate (conductivity ∼8 mS/cm) and two high salinity (∼23 mS/cm) municipal wastewater reverse osmosis concentrate (ROC) samples with varying organic and inorganic characteristics. The process efficiency was characterized in terms of reduction of dissolved organic carbon (DOC), chemical oxygen demand (COD), colour and absorbance at 254 nm (A254), and the improvement of biodegradability. The reduction of colour and A254 was significantly greater than for DOC and COD for all samples due to the greater breakdown of humic compounds, as confirmed by fluorescence excitation-emission matrix spectra. Fairly small differences in the reduction of DOC (26–38%) and COD (25–37%) were observed for all samples, suggesting that the salinity of the ROC did not have a significant impact on the UVC/H2O2 treatment under the test conditions. The biodegradability of the treated ROC samples improved markedly (approximately 2-fold) after 60 min UVC/H2O2 treatment. This study indicates the potential of UVC/H2O2 treatment followed by biological processes for treating high-salinity concentrate, and the robustness of the process where the characteristics of the secondary effluent (influent to RO) and thus resultant ROC vary significantly.


2013 ◽  
Vol 67 (5) ◽  
pp. 1159-1164 ◽  
Author(s):  
L. Yerushalmi ◽  
O. Ashrafi ◽  
F. Haghighat

Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical–chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical–chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO2-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO2-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.


2016 ◽  
Vol 7 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Am Jang ◽  
Jong-Tae Jung ◽  
Hayoung Kang ◽  
Hyung-Soo Kim ◽  
Jong-Oh Kim

We evaluate the applicability of a reverse osmosis (RO) system that combines powdered activated carbon (PAC) and ultrafiltration (UF) to treat the effluent discharged from tannery wastewater treatment plants. Conventional treatment processes such as neutralization, clariflocculation, and biological processes are used to clean the effluent before feeding to the PAC and UF combined RO system. The efficiency of the combined system was evaluated using the chemical oxygen demand Mn (CODMn), color, pH, turbidity, total nitrogen, total phosphate, and conductivity. The PAC was effective in greatly reducing the CODMn and color. The turbidity and silt density index of the UF permeate satisfied the water quality indices required for the RO feed. The RO system was constantly maintained at approximately 75% RO recovery, and the RO permeate satisfied the water quality requirements for reusing the processed water. Therefore, the PAC-UF combined RO system can be used to process effluent discharged from tannery wastewater treatment plants for reuse.


2019 ◽  
Vol 80 (10) ◽  
pp. 1910-1918
Author(s):  
Hewayalage Gimhani Madhushika ◽  
Thilini U. Ariyadasa ◽  
Sanja H. P. Gunawardena

Abstract Most currently employed textile effluent decolourization methods use physical and chemical processes where dyes do not get degraded instead concentrated or transferred into a solid phase. Therefore, further treatment processes are required to destroy dyes from the environment. In contrast, biological decolourization may result in degradation of the dye structure due to microbial activities and hence biological processes can be considered environmentally friendly. In the present study, bacterial strains with dye decolourization potential were isolated from the natural environment and their ability to decolourize four different reactive textile dyes was studied individually and in a bacterial consortium. The developed bacterial consortium composed with Proteus mirabilis, Morganella morganii and Enterobacter cloacae indicated more than 90% color removals for all four dyes and optimum decolourization of the dye mixture was observed at 40 °C and pH 7. The developed bacterial consortium decolourized 60% of dyes in textile industry effluent at 35 °C and pH 7 showing their ability to endure in highly complex and toxic environments and application in textile industry wastewaters.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


Author(s):  
Viola Zaki ◽  
Ahmed EL-gamal ◽  
Yasmin Reyad

he present research carried out to study the common bacterial infections in Oreochromis niloticus (Nile tilapia) in Manzala area at Dakahlia governorate and possible antimicrobial agents used for treatment. A total number of 400 fish were randomly collected from Manzala private farms at Dakahlia governorate and subjected to the clinical, bacteriological and histopathological examination. The highest prevalence of bacterial isolates during the whole period of examination of naturally infected O.niloticus was recorded for A.hydrophila (22.66%), followed by V.alginolyticus (19.01%), V.parahemolyticus (13.80%), Streptococcus spp. (12.24%), A.caviae (11.72%), V.cholera (10.16%), A.salmonicida (7.55%), while the lowest prevalence was recorded for Klebsiella oxytoca (2.86%). The seasonal highest total prevalence of bacterial isolates from examined naturally infected O. niloticus was recorded in spring (30.21%), followed by autumn (28.39%), then summer (22.40%) and the lowest prevalence was recorded in winter (19.01%). Histopathological findings of the tissue samples which collected from different organs of naturally infected O.niloticus revealed that spleen show marked hemosiderosis and sever hemorrhage, gills showsever congestion of lamellar capillaries with marked aneurysm, necrosis and hemorrhage of lamellar epithelium and liver show sever hydropic degeneration and necrosis of hepatocytes, Ciprofloxacin was the most effective antibiotic against all isolated bacterial strains


2020 ◽  
Vol 36 (4) ◽  
pp. 126-135
Author(s):  
T.V. Shushkova ◽  
D.O. Epiktetov ◽  
S.V. Tarlachkov ◽  
I.T. Ermakova ◽  
A.A. Leontievskii

The degradation of persistent organophosphorus pollutants have been studied in 6 soil bacterial isolates and in 3 bacterial strains adapted for utilization of glyphosate herbicide (GP) under laboratory conditions. Significant differences in the uptake of organophosphonates were found in taxonomically close strains possessing similar enzymatic pathways of catabolism of these compounds, which indicates the existence of unknown mechanisms of activity regulation of these enzymes. The effect of adaptation for GP utilization as a sole phosphorus source on assimilation rates of several other phosphonates was observed in studied bacteria. The newly found efficient stains provided up to 56% of GP decomposition after application to the soil in the laboratory. The unresolved problems of microbial GP metabolism and the trends for further research on the creation of reliable biologicals capable of decomposing organophosphonates in the environment are discussed. organophosphonates, glyphosate, biodegradation, bioremediation, C-P lyase, phosphonatase, degrading bacteria Investigation of phosphonatase and genome sequencing were supported by Russian Science Foundation Grant no. 18-074-00021.


2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.


Sign in / Sign up

Export Citation Format

Share Document