Synthesis of Azoloquinazolines and Substituted Benzothiazepine as Antimicrobial Agents

2020 ◽  
Vol 20 (5) ◽  
pp. 418-429 ◽  
Author(s):  
Asmaa F. Kassem ◽  
Fatimah Alshehrei ◽  
Eman M.H. Abbas ◽  
Thoraya A. Farghaly

Background & Objective:Quinazolines and their fused systems are noteworthy in pharmaceutical chemistry due to their wide range of biological activities.Methods:A direct and efficient approach for the synthesis of new series of fused quinazolines with triazole, thiazole, benzimidazole and tetrazole has been preceded via the reaction of quinazoline thione derivative with halogenated compounds or cyclocondensation of arylidene of quinazoline derivative with heterocyclic amines. Also, dibenzo[b,e][1,4]thiazepine derivatives was synthesized through the reaction of 2,6-bis-(2-chloro-benzylidene)-cyclohexanone with o-aminothiophenol.Results:The structures of all new synthesized heterocyclic compounds were confirmed and discussed on the bases of spectral data. The utility of the preparation and design of the above mentioned compounds has been shown to be clear in the results of their antimicrobial activity which revealed that some derivatives have potent activity exceeding or similar to the activity of the reference drugs.Conclusion:The insertion of triazole or thiazole moieties to be fused with quinazoline ring helps to enhance its antimicrobial activity.

2020 ◽  
Vol 26 (8) ◽  
pp. 867-904 ◽  
Author(s):  
Maria Fesatidou ◽  
Anthi Petrou ◽  
Geronikaki Athina

Background: Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections. Objective: The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities. Method: To reach our goal, a literature survey that covers the last decade was performed. Results: As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned. Conclusion: It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.


2019 ◽  
Vol 16 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Jaskirat Kaur ◽  
Divya Utreja ◽  
Ekta ◽  
Nisha Jain ◽  
Shivali Sharma

Background:Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients. </P><P> Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.Conclusion:A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.


2019 ◽  
Vol 15 (5) ◽  
pp. 475-506 ◽  
Author(s):  
Caroline C. Da Silva ◽  
Rosiane M. Martins ◽  
Rafael G. Lund ◽  
Lucas Pizzuti ◽  
Claudio M.P. de Pereira

Background: Heterocyclic compounds containing nitrogen atoms such as pyrazoles have a long history and applicability in the field of medicinal chemistry. Many compounds containing pyrazole moiety have been reported in the available literature for their prominent biological activities, including antimicrobial activity against different microorganisms. Over the years, there has been a concern with the many health problems associated with the dramatic increase of microbial infections and resistance to standard drugs, so there is a need for the development of more effective antimicrobial agents. Pyrazoles and their derivatives are promising candidates to bypass these problems with good safety profiles, and there is a wide range of synthetic methodologies for their obtainment. This review aims to compact a literature survey (2012-2017) very informative and helpful for researchers who wish to study or continue the development of new, potent and broad-spectrum antimicrobial compounds. Methods: This review encompasses reports on the synthesis and antimicrobial evaluation of synthetic pyrazoles from the year 2012 to 2017, which were extracted from bibliographic databases such as PubMed, scielo, sciencedirect, scifinder, and scopus. The main keywords in our search were “pyrazole” and “antimicrobial activity”, in which we made efforts to include synthetic and biological methodologies that can be useful for laboratories of different levels of infrastructure. Moreover, inclusion/ exclusion criteria was applied to select quality reports which could demonstrate different tools of antimicrobial evaluation, focusing on the advances made in the area, such as evaluation in silico and exploration of the possible mechanism of action for active compounds. Results: Thirty-four papers were included in this work, which was displayed chronologically from the year 2012 to 2017 in order to enhance the advances made in the area, with at least five reports from each year. We found that the most commonly tested bacterial strains are Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and from the year 2016 onwards Mycobacterium tuberculosis. The most common tested fungal strains are Candida albicans, Aspergillus flavus, and Aspergillus niger. The majority of articles expressed the antimicrobial results as a zone of inhibition, leading to the determination of the Minimum Inhibitory Concentration (MIC) and a probable mechanism of action for the most prominent compounds, considering cytotoxicity. Aromatic aldehydes and ketones are key reactants to obtain important precursors for the synthesis of pyrazoles, such as chalcones, together with alkyl or phenylhydrazines and thiosemicarbazide. A great variation in the reported MICs was found as there is no standard maximum limit, but many compounds exhibited antimicrobial activity comparable or better than standard drugs, from which 10 reports active compounds with MIC lower than 5 μg mL-1. Conclusion: The findings of this work support the importance of pyrazole moiety in the structure of antimicrobial compounds and the versatility of synthetic methodologies to obtain the target products. Results clearly indicate that they are attractive target compounds for new antimicrobial drugs development. We hope that this information will guide further studies on continuing the search for more effective, highly active antimicrobial agents.


2020 ◽  
Vol 11 (3) ◽  
pp. 3377-3383
Author(s):  
Arulmozhi R ◽  
Abirami N ◽  
Helen P Kavitha ◽  
Arulmurugan S ◽  
Vinoth Kumar J

The creation of novel drugs containing a tetrazole ring as a structural fragment has contributed considerably to the outstanding achievements of the pharmaceutical chemistry in the last decade. Tetrazoles are the heterocyclic compounds having diverse biological activities such as analgesic, antiinflammation, antimicrobial, anticancer, antidiabetic, etc., and an impending source in biosciences. In this paper, the authors describe the synthesis of novel tetrazoles from N, N-( 6-Phenyl-1,3,5-triazine-2,4-diyl) dibenzamide (PTDDB) and 2-phenyl-4, 6-di(2H-tetrazole-2-yl)-1,3,5-triazine(5a-i) were prepared per the proposed scheme. A new class of tetrazole heterocycles were synthesised and characterised. I n vivo analysis was carried out on the analgesic property of synthesised tetrazole derivatives (5a, 5b, 5c). Characterisation studies such as IR, 1H NMR, 13C NMR, Mass and elemental analysis were performed for the synthesised tetrazole derivatives. Some of the tetrazole derivatives 5a, 5b, and 5c were tested for anodyne activity using morphine as the standard drug. The data reveals that all the three compounds 5a, 5b and 5c taken for the study show analgesic activity by hot plate method and tail flick methods. Among tested compounds, compound 5c is found to have potent analgesic (anodyne) activity. The results of the study indicate that the sample taken for the study show fairly good business using morphine as the standard drug.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (&#946;-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


1970 ◽  
Vol 46 (4) ◽  
pp. 513-518 ◽  
Author(s):  
V Subhadradevi ◽  
K Asokkumar ◽  
M Umamaheswari ◽  
AT Sivashanmugam ◽  
JR Ushanandhini ◽  
...  

Since ancient times plant as sources of medicinal compounds have continued to play a dominant role in the maintenance of human health. To treat chronic and infectious diseases plants used in traditional medicine contain a wide range of ingredients. In this regard, Cassia auriculata L. (Caesalpiniaceae) is widely used in Ayurvedic medicine as a tonic, astringent and as a remedy for diabetes, conjunctivitis, ulcers, leprosy, skin and liver diseases. The aim of present study was to evaluate the antimicrobial activity of ethanolic extract of Cassia auriculata leaves and flowers (CALE & CAFE). CALE and CAFE exhibited broad spectrum antimicrobial activity against standard strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis and exhibited no antifungal activity against standard strains of Candida albicans and Aspergillus niger. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) was carried out for CALE and CAFE. The results obtained in the present study indicate that the CALE and CAFE can be a potential source of natural antimicrobial agents. Key words: Cassia auriculata; Antimicrobial activity; Agar well diffusion method. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9600 BJSIR 2011; 46(4): 513-518


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2793 ◽  
Author(s):  
Ameen Abu-Hashem

Substituted-6-methyl-1-thioxo-1,2-dihydro-3H-furo[3,2-g]pyrimido[1,6-a]quinazolin-3-ones (5a,b) were synthesized from condensation of visnagenone (2a) or khellinone (2b) with 6-amino-thiouracil (3) in dimethylformamide or refluxing of (4a) or (4b) in dimethylformamide. Hence, compounds (5a,b) were used as the starting materials for preparing many new heterocyclic compounds such as; furo[3,2-g]pyrimido[1,6-a]quinazoline (6a,b), furo[3,2-g]thiazolo[2′,3′:2,3]pyrimido[1,6-a]quinazolinone (7a,b), substituted-benzylidene-furo[3,2-g]thiazolo[2′,3′:2,3]pyrimido[1,6-a]quinazoline-3,5-dione (8a–f), 3-oxo-furo[3,2-g]pyrimido[1,6-a]quinazoline-pentane-2,4-dione (9a,b), 1-(pyrazole)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (10a,b), 2-(oxo or thioxo)-pyrimidine-furo[3,2-g]pyrimido[1,6-a]quinazolinone (11a–d), 1-(methylthio)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (12a,b), 1-(methyl-sulfonyl)-furo[3,2-g]pyrimido[1,6-a]quinazolinone (13a,b) and 6-methyl-1-((piperazine) or morpholino)-3H-furo[3,2-g]pyrimido[1,6-a]quinazolin-3-one (14a–d). The structures of the prepared compounds were elucidated on the basis of spectral data (IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. Antimicrobial activity was evaluated for the synthesized compounds against Gram-positive, Gram-negative bacteria and fungi. The new compounds, furothiazolo pyrimido quinazolines 8a–f and 11a–d displayed results excellent for growth inhibition of bacteria and fungi.


2017 ◽  
Vol 37 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Jusciêne B. Moura ◽  
Agueda C. de Vargas ◽  
Gisele V. Gouveia ◽  
João J. de S. Gouveia ◽  
Juracy C. Ramos-Júnior ◽  
...  

ABSTRACT: Cladonia substellata Vainio is a lichen found in different regions of the world, including the Northeast of Brazil. It contains several secondary metabolites with biological activity, including usnic acid, which has exhibited a wide range of biological activities. The aim of this study was to evaluate the in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid. Initially, Staphylococcus spp., derived from samples of skin and ears of dogs and cats with suspected pyoderma and otitis, were isolated and analyzed. In antimicrobial susceptibility testing against Staphylococcus spp., 77% (105/136) of the isolates were resistant to the antimicrobials tested. In the assessment of biofilm production, 83% (113/136) were classified as producing biofilm. In genetic characterization, 32% (44/136) were positive for blaZ, no isolate (0/136) was positive for the mecA gene, and 2% (3/136) were positive for the icaD gene. The in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid against Staphylococcus spp. ranged from 0.25mg/mL to 0.0019mg/mL, inhibiting bacterial growth at low concentrations. The substances were more effective against biofilm-producing bacteria (0.65mg/mL-0.42mg/mL) when compared to non-biofilm producing bacteria (2.52mg/mL-2.71mg/mL). Usnic acid and the organic extract of C. substellata can be effective in the treatment of pyoderma and otitis in dogs and cats caused by Staphylococcus spp.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nitishkumar S. Kaminwar ◽  
Sunil U. Tekale ◽  
Srinivas L. Nakkalwar ◽  
Rajendra P. Pawar

: Synthesis of isoxazole structural heterocyclic compounds is important due to their wide range of biological activities. In the present article, we report a convenient and easy method for the synthesis of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-ones by the one-pot three-component reaction of aldehydes, β-keto ester, and hydroxylamine hydrochloride cat-alyzed by sulfated tin oxide as a heterogeneous catalyst.


2016 ◽  
Vol 6 (2) ◽  
pp. 70-76
Author(s):  
Soumia Keddari ◽  
Narimen Benaoum ◽  
Yasmina Mokhtaria Boufadi ◽  
Mansouria Belhocine ◽  
Ali Riazi

Medicinal plants have been used for countries as cures for human diseases because they contain components of therapeutic value. Among these medi-cinal plants, Ammi visnage which have an immense reservoir of potential compounds attributed to the secondary metabolites which have the advan-tage of being of great diversity of chemical structure and have a very wide range of biological activities. The objectives of the present work were to stu-dy the antioxidant and antimicrobial activity of phenolic compounds ex-tracted from A. visnaga L. Its extraction is performed by two methods, etha-nol extraction and water extraction. The results showed that A. visnaga L.. ethanolic extract contains a mixture of phytochemical classes as polyphenol, flavonoids and revealed that this plant has high antioxidant activity (IC50 0.069 mg/ml). Regarding the antimicrobial activity results expressed by the diameter of the inhibition zones by diffusion method AWDT, the most signifi-cant inhibition was observed against to Staphylococcus aureus (12 mm) to the ethanol extract at concentration of 100mg / ml. Thus the aqueous ex-tract had a significant inhibitory activity against on the strains Staphylococ-cus aureus (8 mm), E. coli ATCC 10536 (8 mm) to a concentration of 100 mg / ml. The results for the antibacterial properties have shown that Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and M. luteus.) were more sensitive than gram-negative (Pseudomonas aeruginosa, E. coli ATCC 10536) against from the action of phenolic compounds of the Ammi visnaga ethanolic extract.


Sign in / Sign up

Export Citation Format

Share Document