The Effect of Camera Calibration on Multichannel Texture Classification

Author(s):  
Michele Conni ◽  
Peter Nussbaum ◽  
Phil Green

The efficiency of a texture classification procedure depends on the color space in which it is performed. Classification in a perceptually meaningful space requires chromatic coordinates obtained from a calibrated acquisition setup. The authors assess the impact of camera calibration, within a generic color picture acquisition workflow, on the performance of a number of texture classification techniques. An image calibration pipeline is established and applied to a texture database, and the accuracy of the classification algorithms is evaluated for each step. The results show that the most significant step of the workflow is color rendering although the effect is relatively small. Hence precise scene-referred characterization of the raw data from an acquisition camera is notessential for most texture classification tasks. In addition, workingwith output-referred RGB data is likely to be adequate for the majority of classification tasks.

2020 ◽  
Vol 4 (2) ◽  
pp. 118-129
Author(s):  
Asti Gumartifa ◽  
◽  
Indah Windra Dwie Agustiani

Gaining English language learning effectively has been discussed all years long. Similarly, Learners have various troubles outcomes in the learning process. Creating a joyful and comfortable situation must be considered by learners. Thus, the implementation of effective learning strategies is certainly necessary for English learners. This descriptive study has two purposes: first, to introduce the classification and characterization of learning strategies such as; memory, cognitive, metacognitive, compensation, social, and affective strategies that are used by learners in the classroom and second, it provides some questionnaires item based on Strategy of Inventory for Language Learning (SILL) version 5.0 that can be used to examine the frequency of students’ learning strategies in the learning process. The summary of this study explains and discusses the researchers’ point of view on the impact of learning outcomes by learning strategies used. Finally, utilizing appropriate learning strategies are certainly beneficial for both teachers and learners to achieve the learning target effectively.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Miriam Gade ◽  
Kathrin Schlemmer

Cognitive flexibility enables the rapid change in goals humans want to attain in everyday life as well as in professional contexts, e.g., as musicians. In the laboratory, cognitive flexibility is usually assessed using the task-switching paradigm. In this paradigm participants are given at least two classification tasks and are asked to switch between them based on valid cues or memorized task sequences. The mechanisms enabling cognitive flexibility are investigated through two empirical markers, namely switch costs and n-2 repetition costs. In this study, we assessed both effects in a pre-instructed task-sequence paradigm. Our aim was to assess the transfer of musical training to non-musical stimuli and tasks. To this end, we collected the data of 49 participants that differed in musical training assessed using the Goldsmiths Musical Sophistication Index. We found switch costs that were not significantly influenced by the degree of musical training. N-2 repetition costs were small for all levels of musical training and not significant. Musical training did not influence performance to a remarkable degree and did not affect markers of mechanisms underlying cognitive flexibility, adding to the discrepancies of findings on the impact of musical training in non-music-specific tasks.


2021 ◽  
Vol 13 (8) ◽  
pp. 4105
Author(s):  
Yupei Jiang ◽  
Honghu Sun

Leisure walking has been an important topic in space-time behavior and public health research. However, prior studies pay little attention to the integration and the characterization of diverse and multilevel demands of leisure walking. This study constructs a theoretical framework of leisure walking behavior demands from three different dimensions and levels of activity participation, space-time opportunity, and health benefit. On this basis, through a face-to-face survey in Nanjing, China (N = 1168, 2017–2018 data), this study quantitatively analyzes the characteristics of leisure walking demands, as well as the impact of the built environment and individual factors on it. The results show that residents have a high demand for participation and health benefits of leisure walking. The residential neighborhood provides more space opportunities for leisure walking, but there is a certain constraint on the choice of walking time. Residential neighborhood with medium or large parks is more likely to satisfy residents’ demands for engaging in leisure walking and obtaining high health benefits, while neighborhood with a high density of walking paths tends to limit the satisfaction of demands for space opportunity and health benefit. For residents aged 36 and above, married, or retired, their diverse demands for leisure walking are more likely to be fulfilled, while those with high education, medium-high individual income, general and above health status, or children (<18 years) are less likely to be fulfilled. These finding that can have important implications for the healthy neighborhood by fully considering diverse and multilevel demands of leisure walking behavior.


Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1010
Author(s):  
Claudio Cusano ◽  
Paolo Napoletano ◽  
Raimondo Schettini

In this paper we present T1K+, a very large, heterogeneous database of high-quality texture images acquired under variable conditions. T1K+ contains 1129 classes of textures ranging from natural subjects to food, textile samples, construction materials, etc. T1K+ allows the design of experiments especially aimed at understanding the specific issues related to texture classification and retrieval. To help the exploration of the database, all the 1129 classes are hierarchically organized in 5 thematic categories and 266 sub-categories. To complete our study, we present an evaluation of hand-crafted and learned visual descriptors in supervised texture classification tasks.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1971
Author(s):  
Lihua Ye ◽  
Muhammad Muzamal Ashfaq ◽  
Aiping Shi ◽  
Syyed Adnan Raheel Shah ◽  
Yefan Shi

In this research, the aim relates to the material characterization of high-energy lithium-ion pouch cells. The development of appropriate model cell behavior is intended to simulate two scenarios: the first is mechanical deformation during a crash and the second is an internal short circuit in lithium-ion cells during the actual effect scenarios. The punch test has been used as a benchmark to analyze the effects of different state of charge conditions on high-energy lithium-ion battery cells. This article explores the impact of three separate factors on the outcomes of mechanical punch indentation experiments. The first parameter analyzed was the degree of prediction brought about by experiments on high-energy cells with two different states of charge (greater and lesser), with four different sizes of indentation punch, from the cell’s reaction during the indentation effects on electrolyte. Second, the results of the loading position, middle versus side, are measured at quasi-static speeds. The third parameter was the effect on an electrolyte with a different state of charge. The repeatability of the experiments on punch loading was the last test function analyzed. The test results of a greater than 10% state of charge and less than 10% state of charge were compared to further refine and validate this modeling method. The different loading scenarios analyzed in this study also showed great predictability in the load-displacement reaction and the onset short circuit. A theoretical model of the cell was modified for use in comprehensive mechanical deformation. The overall conclusion found that the loading initiating the cell’s electrical short circuit is not instantaneously instigated and it is subsequently used to process the development of a precise and practical computational model that will reduce the chances of the internal short course during the crash.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


Sign in / Sign up

Export Citation Format

Share Document