scholarly journals Reviewing Plasma Seed Treatments for Advancing Agriculture Applications on Earth and Into the Final Frontier

2021 ◽  
Vol 9 (1) ◽  
pp. 133-158
Author(s):  
Annie Meier ◽  
Deborah Essumang ◽  
Mary Hummerick ◽  
Christina Johnson ◽  
Mirielle Kruger ◽  
...  

Abstract With benefits such as environmentally safe treatment methods to stimulate growth, to increase plant yield, and improve disinfection efficiency, literature on the field of plasma treatment of seeds is growing. Generalized variables and success criteria have not been well correlated between studies, so this review paper serves to connect plasma and agriculture technologies to coordinate future efforts in this growing area of research. The authors have particular interest due to space agriculture, where seeds are sanitized before being sent into space for crop production. In order to supply a spectrum of nutritional needs, it is necessary to provide a variety of crops and ensure biological decontamination before the seeds are being sent into space. Traditional seed sanitization methods are not viable for all seed types, so exploration of other options is needed to expand the astronaut diet on long-duration space missions. This review paper brings together the current state-of-the-art reported literature to aide in understanding plasma seed application apparatus, seed or crop performance pertaining to germination, growth, water interactions, inactivation of bacteria, and surface sanitization results. These recent works include evolving research themes for potential seed treatment sanitization processes for various seed types to ensure the viability of plants for future growth in microgravity crop production systems.

2021 ◽  
Vol 10 (10(6)) ◽  
pp. 1778-1793
Author(s):  
Rudorwashe Baipai ◽  
Oliver Chikuta ◽  
Edson Gandiwa ◽  
Cheidza Mutanga

Sustainable agritourism development is at the apex of contemporary discussions on sustainable tourism development as evidenced by enormous studies being done on this tourism concept. This review paper discussed the contributions of one hundred and five (105) research articles that were published in several tourism journals. The main objective of this paper was to establish the current state of literature on Success Factors (SFs) for sustainable agritourism development, identify research gaps, suggest areas of future study and draw lessons that are of importance to the development of agritourism in Zimbabwe. Statistical analysis was employed in order to establish the distribution of the sampled research articles over time, by continent, distribution by research method, distribution by research approach and distribution by research themes. The results of this study revealed that research on agritourism development is biased towards the developed countries, most of the research used qualitative research with focus more on the supply side and little has been done to establish the requirements and CSFs for the development of this tourism concept. The findings of this study provide a baseline upon which future studies in agritourism, could be build.


2021 ◽  
Vol 22 (3) ◽  
pp. 401-408
Author(s):  
Sunil Kumar ◽  
Manjeet Singh ◽  
K.K. Yadav ◽  
P.K. Singh

Hydroponic crops can be grown using a variety of media and production systems (NFT system, wick system, drip system, ebb flow system etc.). EC and pH management are required to successfully handle these hydroponic systems (water quality and nutrient solution maintenance). These hydroponics systems have gained rapid adoption due to disciplined management of their resources and food production. Although the hydroponic system was developed in a closed-loop system, and substrate nutrition increases production, it is not cost-effective to develop this system on big scale. It is critical to design a low-cost hydroponic structure that decreases reliance on human labour and lowers overall startup cost in order to increase the commercialization of hydroponic farms. We need more research to develop more productive and cost-effective organic nutrient solutions and improve hydroponic crop production systems. In this review paper, we will discuss the opportunity and challenges in hydroponic crop production systems. 


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


Author(s):  
Gert Kootstra ◽  
Xin Wang ◽  
Pieter M. Blok ◽  
Jochen Hemming ◽  
Eldert van Henten

Abstract Purpose of Review The world-wide demand for agricultural products is rapidly growing. However, despite the growing population, labor shortage becomes a limiting factor for agricultural production. Further automation of agriculture is an important solution to tackle these challenges. Recent Findings Selective harvesting of high-value crops, such as apples, tomatoes, and broccoli, is currently mainly performed by humans, rendering it one of the most labor-intensive and expensive agricultural tasks. This explains the large interest in the development of selective harvesting robots. Selective harvesting, however, is a challenging task for a robot, due to the high levels of variation and incomplete information, as well as safety. Summary This review paper provides an overview of the state of the art in selective harvesting robotics in three different production systems; greenhouse, orchard, and open field. The limitations of current systems are discussed, and future research directions are proposed.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


2005 ◽  
Vol 34 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Alan Cork ◽  
Malcolm J. Iles ◽  
Nazira Q. Kamal ◽  
J.C. Saha Choudhury ◽  
M. Mahbub Rahman ◽  
...  

Bangladesh is essentially self-sufficient in rice as a result of the successful adoption of new high-yielding varieties and irrigated summer production over traditional deep-water cultivation practices. The sustainability of the cropping system depends on farmers adopting integrated pest management (IPM) practices in preference to relying solely on insecticides for pest and disease control. Yet insecticide consumption in rice is increasing, in common with other crop-production systems in Bangladesh. It is probably only the poor economic returns from rice cultivation that prevent more widespread use of pesticides. Enlightened agrochemical companies such as Syngenta Bangladesh Limited have recognized that insecticide use in rice should be discouraged, and promote IPM options through their farmer field school (FFS) programme. This paper describes the results of a collaborative project to assist Syngenta to develop and incorporate mass trapping with sex pheromones into their FFS programme as an environmentally benign method of controlling the predominant insect pests of rice, stem borers.


1990 ◽  
Vol 4 (3) ◽  
pp. 631-634 ◽  
Author(s):  
R. E. Blackshaw

Field studies were conducted in 1987, 1988, and 1989 at Lethbridge, Alberta to determine suitable herbicides for the control of Russian thistle and kochia in field corn grown in a dryland cropping system. Soil-applied atrazine or cyanazine provided inconsistent control of these weeds under dryland conditions. Combining inter-row tillage or 2,4-D applied postemergence with soil-applied atrazine improved the consistency of weed control over years. Postemergence atrazine and dicamba plus 2,4-D controlled Russian thistle and kochia in all years. Corn yields reflected the level of weed control attained with each treatment. The suitability of the various treatments for weed control in corn grown under dryland crop production systems is discussed.


Sign in / Sign up

Export Citation Format

Share Document