scholarly journals Requirements for Pavement Base Layers with Unbound Granular Material

2019 ◽  
Vol 27 (3) ◽  
pp. 21-28
Author(s):  
Silvia Cápayová ◽  
Zuzana Štefunková ◽  
Stanislav Unčík ◽  
Andrea Zuzulová

Abstract Pavement structures, layers, and parameters must meet the strict requirements of applicable standards and regulations. The thickness of layers and the choice of materials depend on the factors involved, i.e., the traffic load and climatic factors (changes in temperature, water, rain, snow); they are also dependent on the geological environment at the road construction site and the parameters and properties of the embankment (the subgrade of the pavement). In some cases, the capacity of the existing transport infrastructure is on the edge of sustainability. The increase in the traffic load and the use of lower-class roads by freight transport, together with insufficient maintenance, has resulted in a deterioration of road conditions, thereby causing many deficiencies and failures. The required serviceability and operational performance of roads can be ensured by the choice of suitable quality materials and technological construction processes. Technologies that are environmentally acceptable and economically efficient should be preferred.

2021 ◽  
Vol 2021 ◽  
pp. 86-93
Author(s):  
Anatolii Mudrychenko ◽  
◽  
Andrii Hrinchuk ◽  
Ivan Balashov ◽  
Sergey Illyasch ◽  
...  

Introduction. Growing volumes of road construction increase the need to expand and rationally use of raw materials. The need for stone materials can be solved through the wide spread using of local materials, recycled products of industry in the pavement base courses and decreasing the use of natural construction materials by replacing them with alternatives, including soils, slag materials that are metallurgical industry wastes. Experience of ferrous metallurgy slag usage has been accumulated in the road industry of Ukraine. Their usage makes it possible to extend the construction season, increases the strength and reliability of road structures due to their physical and mechanical properties, significantly reduces the road pavement energy consumption, simplifying the technology of works and the estimated cost of road construction. It was determined that the layers of pavement made from blast furnace slag have a high bearing capacity. Slag structures in 5–10 years of hardening are not inferior to, and in 10–20 years surpass cement structures on durability and deformation resistance. However, there is an urgent need to provide strength and open road traffic on the already built road section in a shortest possible term, so there is a need to accelerate the activation of the slow-setting binder. Therefore water glass (water solution of sodium silicate) is used.Purpose. The purpose of the work is to study the feasibility of using the soils and recycled industry products treated with water glass in the road pavement base courses.Materials and methods. Experimental tests of soils and blast furnace slags treated with water glass with different content of water solution of sodium silicate were performed.Results. The feasibility of using the asphalt concrete mixtures on the basis of soils and recycled products of industry treated with water glass in the pavement base courses is determined. Recommendations regarding technological parameters of preparation, transportation, laying and compaction of such mixes are given.Conclusions. Performed studies have shown that the physical and mechanical parameters of soils and blast furnace slags treated with water glass meet the requirements of current regulations of Ukraine. The advantages of use are noted, namely: the possibility of replacement of traditional stone materials by the local materials and recycled products of industry, reducing the transport component in the cost of construction. The obtained results indicate the feasibility of using the soils and recycled products of industry treated with water glass in the road construction.Keywords: soils, recycled products of industry, graded blast furnace slag, water solution of sodium silicate, water glass


2018 ◽  
Vol 6 (1) ◽  
pp. 11-11
Author(s):  
Наталья Борисова ◽  
Natal'ya Borisova ◽  
Елена Егорова ◽  
Elena Egorova ◽  
Александр Борисов ◽  
...  

The article considers the most important component of the transport infrastructure - the road infrastructure, which at the same time is one of the most important spheres of economic activity. The socio-economic development of the Russian Federation has been studied, requiring advanced development and modernization of the road network as part of the transport infrastructure of the country and world space, as well as improving the technical level of road construction.


2018 ◽  
Vol 1 (3) ◽  
pp. 76-82
Author(s):  
Wihardi Wihardi ◽  
Munirwansyah Munirwansyah ◽  
Sofyan M. Saleh

Road infrastructure is very important and is a key enabler for the economy. If the road infrastructure was damaged or had various problems such as sliding, the movement of goods and passengers will be hampered and delayed to the acceleration of development in the local area. The landslide and movement of groundwater is a problem that often occurs repeatedly on some streets. Therefore, it is necessary to study the strengthening of the slopes at the bottom of the road construction with retaining wall. This study aims to analyze slope stability by getting numbers Safety Factor (FK). The analysis is used to analyze the stability of slopesusing the finite element method with the help of software Plaids, The scope of this review includes the calculation of slope stability at the national road from Banda Aceh - Medan Sta. 83 + 185 Mount Selawah. The results of slope stability analysis on the existing condition by using Plaxis software at the point of a review is not safe (FK 1.25). Thus, it is done handling the retaining wall, installation of anchors. Based on the analysis of slope stability after being given the strengthening of the slopes with a retaining wall and the installation of anchors using Plaxis software under the influence of traffic load in an unsafe condition (FK 1.25). Then additional handling is done by changing the angle of the slope so that the value of the safety factor (FK) 1.25.


2020 ◽  
Vol 2020 (2) ◽  
pp. 35-41
Author(s):  
Iryna Hornikovska ◽  
◽  
Vadym Kahanov ◽  

The article is devoted to the problems associated freeze with the calculated estimation of the parameters of the structural and heat-insulating antifreeze layer in the subgrade of non-rigid roads on various soil bases. The main physical, technical and deformation characteristics of monolithic dispersed non-autoclaved foam concrete reinforced with polypropylene fiber of grades of density from 600 to 1000 kg/m3 are investigated. Freezing of subsoil waters directly under the roadway pavement and, as a result, its increase in volume, leads to significant deformations of the road surface. Under such conditions, the period of defectfree operation of the roadway pavement is significantly reduced, which in turn leads to the need to repair it in a more intensive mode. One of the ways to reduce the operating cost and maintenance costs of the road transport infrastructure is to introduce into the design and construction practice new structural concepts for road surface dressing that ensure high quality pavement during the normative operational period. This can be achieved by introducing an effective heat-insulating material into the pavement structure as an anti-frost layer in order to elimi-nate the effect of frost lift of the roadway pavement of non-rigid roads. Since domestic and foreign experience freeze in the road construction has proven the effectiveness of the use of heatinsulating materials in the road surface dressing construction, in recent years in Ukraine there has been increased interest in the use of non-autoclaved foam concrete as a modern and highly effective heat-insulating material in road construction. The installation of a heat-insulating layer made of non-autoclaved foam concrete allows us to completely or partially prevent freezing or overheating of the surface dressing base, reduce the influence of periodic variations in environmental temperature, which in turn will increase the durability of the pavement structure. The publication presents nomograms for determining the optimal thickness of the heat-insulating anti-frost heavy course (layer) of road surface dressing (based on sand, loamy sand, clay and loam) done at the street and road network for all climatic and geographical regions of Ukraine.


2019 ◽  
Vol 10 (4) ◽  
pp. 1022
Author(s):  
Liubov KARBOVSKA ◽  
Anna BRATUS ◽  
Olena LOZHACHEVSKA ◽  
Ekaterina ZHELEZNIAK ◽  
Tamara NAVROTSKA

The advantages of using motor transport for transportation of goods are substantiated. On the basis of an analysis of the indicators of the volume of transported goods and the turnover of goods of motor transport in a number of countries of Europe (Austria, Great Britain, Spain, Italy, Poland, Finland, France, the Czech Republic, Sweden), reduction of activity in the field of road transportation of goods in 2013 − 2014 and its activation in 2015-2016 are established; in addition, the influence of such negative environmental factors on the activity of road transportation of goods as reduction of the trade turnover of these countries with Russia as a result of the EU sanctions, increasing competition in the road transportation market, and the strengthening of the EU requirements for rolling stock and social guarantees for transportation workers was identified. The statistical data on the volume of transported goods and goods turnover of motor and all types of transport during 2012 − 2017 in Ukraine was explored, and a number of problems were identified that hinder the development of this sphere of activity, the main of which are: low quality of transport infrastructure and, above all, unsatisfactory conditions of road communication lines and corruption in the road construction sector, resulting from inefficient management of the field of activity; low level of safety control as far as road traffic and environmental protection are concerned; environmental pollution by road transport with emissions of harmful gases and transport noise, etc. The basic areas of the development of the sphere of road transportations of goods and of the network of highways are determined.


2019 ◽  
Vol 5 (3) ◽  
pp. 97
Author(s):  
Nurul Fauziah Endah Ningtyas ◽  
Samun Haris

ABSTRAKJalan sebagai sarana penunjang transportasi darat memiliki peran penting untuk memenuhi kebutuhan manusia. Salah satu material penting dalam pembuatan jalan adalah agregat. Sifat fisik agregat menjadi salah satu faktor penentu tebal lapisan struktur perkerasan. Ruas jalan Sofi–Wayabula adalah ruas jalan nasional strategis di Pulau Morotai dengan menggunakan perkerasan lentur. Agregat yang digunakan untuk lapis fondasi bawah pada ruas jalan ini adalah kombinasi agregat Eks. Palu dengan agregat Eks. Morotai. Tujuan dari penelitian ini adalah untuk menganalisis tebal lapis fondasi bawah berdasarkan koefisien kekuatan relatif ( ) yang didapat dari nilai CBR kombinasi agregat Eks. Palu dengan agregat Eks. Morotai dan agregat Eks. Palu pada struktur perkerasan lentur. Dari hasil perhitungan metode Manual Perkerasan Jalan 2017 didapatkan tebal lapis fondasi bawah sebesar 15 cm, bernilai sama, baik menggunakan kombinasi agregat Eks. Palu dengan agregat Eks. Morotai, maupun agregat Eks. Palu. Sedangkan, dengan menggunakan Pedoman Perkerasan Jalan Lentur 2011 didapat tebal lapis fondasi bawah sebesar 15,054 cm untuk kombinasi agregat Eks. Palu dengan agregat Eks. Morotai dan 14,608 cm untuk agregat Eks. Palu.Kata Kunci: perkerasan lentur, koefisien kekuatan relatif, lapis fondasi bawah. ABSTRACTRoads as a means of supporting land transportation have an important role to meet human needs. One of important material in road construction is aggregate. The aggregate physical properties become one of the determinants of the pavement thickness structure layer. The road segment of Sofi-Wayabula is a strategic national road in Morotai Island by using flexible pavement. The aggregate used for the sub-base course of the road is combination of aggregate Ex. Palu with Ex. Morotai aggregate. The purpose of this research is to analyze the thickness of the sub-base course based on relative strength coefficient  (a3) obtained from the value of CBR combination of aggregate Ex. Palu with Ex. Morotai aggregate and aggregate Ex. Palu on flexible pavement structures. From the calculation results of the Pavement Road Manual method 2017, the thick of sub-base course is 15 cm, have equal value using the combination of Ex. Palu aggregate with Ex. Morotai aggregate or the Ex.Palu aggregate. Meanwhile, by using Flexible Road Pavement Guideline 2011 the thickness of the sub-base course is 15,054 cm for combination of Ex.Palu aggregate with Ex. Morotai aggregate and 14,608 cm for Ex.Palu.Keywords: flexible pavement, relative strength coefficient, sub-base course.


Author(s):  
Victoria Bitykova ◽  
Nikita Mozgunov

The main discussion is about methods for assessing the intensity of traffic flows using geoinformation technologies. The intensity of traffic flows is one of the key indicators that determine the emission from transport in urban areas. In Russia, the growth in the volume and share of motor transport in pollution is increasing under the influence of an increase in the number of cars. This is most obvious examples of it are regions of the Central Federal District, but in the regional centers, under the influence of the improvement in the structure of the vehicle park, the growth of pollution is much slower, and in Moscow it has practically stabilized. At the local level, the determining factor of road traffic pollution is the change in the building density and the transport-planning structure. The collection and calculation of indicators that give an idea of the spatial differentiation of emissions from road transport is a very time-consuming stage of the study. The most common method of obtaining information on the transport and environmental situation in the city is directly field data collection. However, this method is quite time consuming for research. In conditions when the transport infrastructure is developing rapidly, the speed of field observations does not allow promptly updating information on changes in the traffic load of the road network and, as a result, assessing the current ecological situation in the territory. As an alternative to the traditional collection of information, modern sources of geoinformation data can be used. The services, originally developed to provide operational monitoring of the traffic situation and the construction of optimal routes, can also serve as a source of data for models for assessing the intensity of traffic load in environmental studies. The proposed technique has been tested at the level of districts and administrative districts of Moscow. The results obtained are compared with control field observations. The relatively low measurement error when using data from information systems is compensated by the possibility of more efficiently obtaining information about the traffic load on the sections of the road network.


2021 ◽  
Vol 18 (1) ◽  
pp. 55-63
Author(s):  
Mukhlis MT ◽  
Zulfira Mirani ◽  
Enita Suardi ◽  
Nur Arifin

Concrete blocks are an alternative surface coating for road construction made of a mixture of cement, filler and water. The road that will be redesigned with pavement thickness is the DR. Moh. Hatta section of Pasar Baru - Gate of Unand Padang. This road has an uphill contour so that conventional roads are unable to withstand the flow of water falling down, causing puddles that can damage the road construction. Pavement thickness planning for paving block roads on Jalan DR. Moh. Hatta Padang uses the 1987 component analysis method and the 2002 component analysis method by entering the road planning parameters: the carrying capacity of the soil is obtained from the CBR value of the subgrade, the traffic load is obtained from the average daily traffic. With a subgrade CBR of 5.25%, 8 cm thick paving blocks with K-300 quality, 100% CBR crushed stone foundation layer, and 70% CBR gravel bottom foundation layer. So from the 1987CAM results obtained a surface layer with a thickness of 8 cm, 10 cm lean concrete, 15 cm top foundation layer, and 10 cm bottom foundation layer. While 2002 CAM obtained a surface layer of 8 cm thick, 10 cm of lean concrete, 10 cm of top foundation layer, and 10 cm of bottom foundation layer.  


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1466
Author(s):  
Manuel Cabrera ◽  
Mónica López-Alonso ◽  
Laura Garach ◽  
Javier Alegre ◽  
Javier Ordoñez ◽  
...  

The management of different industrial by-products, such as recycled aggregates from construction and demolition waste and alumina by-products, as well as the reduction of landfill deposits by incorporating these products in a second life cycle, were the focus of this work. The aim of this study was to demonstrate the technical viability of using these waste and by-product as a material for road pavement base layers. For this purpose, a real-scale application was carried out, and the behavior of three types of materials, applied on a section of an experimental road under real vehicle traffic conditions, was studied and compared. Three materials were used in these sections applied in the road sub-bases. First, a control material composed of a type of artificial gravel was used to be compared with the rest of materials; the second material was composed of recycled aggregates, and the third was composed of a mix of recycled aggregates and alumina waste. The results concluded that the effectiveness of the sections built using recycled aggregates and alumina waste was very positive and similar those constructed using natural aggregates.


Respuestas ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 108
Author(s):  
Carlos Hernando Higuera-Sandoval

Objetivo: El presente artículo muestra de manera detallada el efecto de la temperatura en la determinación del módulo dinámico del cemento asfáltico y el módulo dinámico de la mezcla asfáltica. Metodología: Para la investigación se consideraron las temperaturas medias anuales ponderadas más representativas de las regiones del departamento de Boyacá de 13°C a 20°C, también la velocidad de operación de sus carreteras de 30, 50, 70 y 100 Km/hora y se analizaron dos cementos asfálticos del tipo AC 60 – 70 y AC 80 – 100, estipulados en el artículo INV 400-13 de las especificaciones generales de construcción de carreteras del Instituto Nacional de Vías – INVIAS - 2013 y que son de uso frecuente en la construcción de pavimentos en el departamento de Boyacá. Para la determinación de los módulos dinámicos del asfalto y de la mezcla asfáltica se siguió la metodología de la SHELL y se analizaron las variables como la temperatura media anual ponderada del aire – TMAP, la temperatura de trabajo de la mezclas – tmix, la velocidad de operación de las carreteras – Vop, el tiempo de aplicación de la carga – t, la frecuencia de la aplicación de la carga – F y el índice de penetración del asfalto – IP. Resultados: Se presentan los módulos dinámicos del asfalto y de la mezcla asfáltica para diferentes temperaturas medias anuales ponderadas y diferentes velocidades de operación de las carreteras del Departamento de Boyacá, para los asfaltos tipo AC 60-70 y AC 80-100. Conclusión: El aporte de este trabajo de investigación es de gran utilidad para los ingenieros de diseño de estructuras de pavimentos, porque permite conocer el módulo dinámico de una mezcla asfáltica densa en caliente tipo INVIAS MDC-19 para rodadura, teniendo en cuenta la temperatura media anual ponderada de la zona del proyecto y las características de operación de la carretera, variables fundamentales para el diseño de las estructuras de pavimento flexible.Abstract Objective: This article shows in detail the effect of temperature on the determination of the dynamic module of asphaltic cement and the dynamic module of the asphalt mix. Method: Average pondered annual temperatures of the most representative Regions of the department of Boyaca ranging 13 ° C to 20 ° C were considered, as well as the speed of operation of its highways 30, 50, 70 and 100 km / hour and were considered, and two asphalt cements the type AC 60 - 70 and AC 80 – 100 which are stipulated in the article INV 400-13 of the general speciications for road construction of the National roads Institute - INVIAS - 2013 of frequent use in the pavement construction in the department of Boyaca. For the determination of the dynamic modules of asphalt and asphalt mixture the methodology SHELL was followed and variables as the weighted average annual air temperature TMAP, temperature Working Mixtures - TMIX, Speed Operation of roads - VOP, the application time load - t, the frequency of application of the load - F and the rate of penetration asphalt - IP were analyzed. Results: Dynamic modules asphalt and asphalt mixture paragraph for different annual pondered average temperatures and different speeds of operation of the roads on the Department of Boyaca are presented, for asphalts type AC 60-70 and AC 80-100. Conclusion: The contribution of this research work is very useful for Design Engineers of pavement structures as it allows to know the dynamic module of a hot-dense asphalt mixture of the type INVIAS MDC-19 for rolling, taking into account the annual pondered average temperature of the project area and the operating characteristics of the road, fundamental variables for the design of lexible pavement structures.Palabras clave: Diseño de pavimentos lexibles, mecánica de pavimentos, mezclas asfálticas, módulos dinámicos


Sign in / Sign up

Export Citation Format

Share Document