scholarly journals SPOROBOLUS SPICATUS, A POTENTIAL TURF GRASS UNDER THE CLIMATIC CONDITIONS OF UAE

2018 ◽  
Vol 2 ◽  
pp. 1 ◽  
Author(s):  
Muhammad Zamin ◽  
Abdul Mateen Khattak ◽  
Mohammed A. Salem Alyafei ◽  
Muhammad Sajid ◽  
Muhammad Shakur ◽  
...  

Different accessions of Sporobolus spicatus were tested for the possible use in the landscaping sector of United Arab Emirates. In this regards, fifty accessions of S. spicatus were screened against five salinity levels of 15, 30, 45, 60 and 75dSm-1 at 3cm mowing height. Significant variations were found among the treatment for various characters of leaf colour, fresh and dry weight. Most of the accessions of the grass tolerated up to 45 dSm-1, without compromising on quality. Further increase in salinity, most of the accessions ceased to grow, except a few accessions which survived even at salinity levels of 75dSm-1. Many of the grasses exhibit better performance than Paspalam vaginatum, the prevailing commercial turf grass in UAE (used as control in this instance). As a whole accessions 45S, 18S, 35S and 37S showed salinity tolerance at 3cm mowing height and maintaining quality up to the acceptable level. Based on their tolerance to salinity and better performance, these accessions are recommended for turf use in public landscaping.

2018 ◽  
Vol 6 (2) ◽  
pp. 214
Author(s):  
Md. Isfatuzzaman Bhuyan ◽  
K M. Mehadi Hassan ◽  
Nowrose Jahan Lipi ◽  
Md Rafiq Uddin ◽  
Md Monirul Islam ◽  
...  

A study was conducted in the Department of Agronomy, Bangladesh Agricultural University (BAU), Mymensingh from April to August 2012 to examine the salinity tolerance of eight jute varieties (CVE-3, C-83, CVL-1, BJC-7370, O-795, O-9897, OM-1, O-72) and two kenaf varieties (HC-95 and HC-2). Initially germination of these varieties were evaluated under six salinity levels viz. 0mM, 20mM, 40mM, 60mM, 80mM, and 100mM NaCl in the seed laboratory of the Department of Agronomy. Afterwards, all the varieties was grown in pots in the net house under four salinity levels viz. 0mM, 25mM, 50mM, and 75mM. The results from the germination study revealed that under control condition (0mM NaCl) all the jute varieties showed germination more than 80% both at 7 and at 14 days after seed sowing, whereas kenaf varieties had germination a little less than 80%. Among the jute varieties, O-72 showed the highest germination (92%), which was statistically similar with those of OM-1(91%), O-795 (90%), and C-83(87%). Salinity stress decreased germination drastically in all of the jute and kenaf varieties. A salinity level of 100mM caused the highest germination inhibition (74.70%) in jute variety CVL-1, which was very close to those of BJC-7370 and O-72. On the other hand, the lowest germination inhibition (51.11%) was recorded in jute variety O-795. The results of the pot trail showed that the plant characters of jute and kenaf varieties were affected significantly by salinity stress. All the varieties produced their respective plant height, number of leaves per plant, and plant dry weight under control condition (no salinity). Among these varieties, CVE-3 produced the highest plant height (145.2cm), and total dry weight (22.55g), whereas O-72 produced the highest number of leaves per plant (24.67). All these plant characters decreased sharply due to salinity stress irrespective of variety. However, the rate of decrease of plant characters occurred differentially in the jute and kenaf varieties. The highest rate of decrease in number of leaves (74.22%) was found from the variety CVE-3, whereas the lowest one was recorded from the variety HC-2 (51.68%). Salinity stress caused the highest decrease in total plant dry weight (73.68%) in the variety CVL-1 and plant height (73.64%) also in the variety CVL-1. On the contrary, the lowest decrease in plant dry weight (50.99%) was found in the variety O-9897 and plant height also in variety O-9897 (50.88%). Based on the results from germination test and pot trail, it can be inferred that jute variety O-9897 appeared to be the most salt tolerant followed by O-795, HC-2, HC-95, CVE-3, O-72, C-83, BJC-7370, OM-1, and CVL-1.    


1994 ◽  
Vol 72 (8) ◽  
pp. 1216-1221 ◽  
Author(s):  
O. T. Okusanya ◽  
O. Oyesiku

The germination and growth responses of two legumes, Vigna luteola and Vigna vexillata, to different salinity levels were compared in laboratory experiments. Vigna luteola seeds tolerated a higher level of salinity and germinated significantly better at high salinities than corresponding results for V. vexillata. Seedlings of V. luteola exhibited a significant increase in dry weight at 10% sea water followed by a significant decrease at 30% seawater and above. Vigna vexillata seedlings showed a gradual decrease in dry weight with increased salinity. Except at 0% seawater, dry weights of V. luteola seedlings were significantly higher than those of V. vexillata at all salinities tested. The proportion of root weight to total plant dry weight increased with increased salinity in V. luteola; the reverse was the case in V. vexillata. In both species, increased salinity resulted in increased sodium content but decreased potassium and calcium contents. While the sodium content of the shoot of V. vexillata was higher than that of V. luteola, the amount in the roots of V. luteola was higher. The potassium and calcium contents were higher in V. luteola than in V. vexillata and the sodium to potassium ratio values were lower in V. luteola than in V. vexillata. The results are compared with those of other legumes and discussed in relation to the habitats of the species, the characteristics of halophytes, and the uses which these legumes may have in salt-enriched lands. Key words: salinity, tolerance, germination, growth, Vigna.


HortScience ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 527-530 ◽  
Author(s):  
Qi Zhang ◽  
Kevin Rue ◽  
Sheng Wang

Salinity tolerance of five buffalograss [Buchloe dactyloides (Nutt.) Englem.] cultivars (Texoka, Cody, Bison, Sharp's Improved II, and Bowie) and three blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] ecotypes (‘Lovington’, ‘Hachita’, and ‘Bad River’) was determined during in vitro seed germination and vegetative growth in a hydroponic system. Seeds were germinated on 0.6% agar medium supplemented with NaCl at 0, 5, 10, 15, and 20 g·L−1. Salinity reduced the final germination rate (FGR) and daily germination rate (DGR). Similarly, shoot dry weight (SDW), longest root length (LRL), and percentage of green tissue (PGT) of mature grasses declined with increasing salinity levels (NaCl = 0, 2.5, 5, 7.5, and 10 g·L−1). However, root dry weight (RDW) was not significantly affected by salinity. Blue grama exhibited a lower reduction in FGR and DGR than buffalograss at salinity levels lower than 10 g·L−1. Germination of all buffalograss cultivars and ‘Hachita’ blue grama was inhibited at salinity levels of 15 and 20 g·L−1 NaCl. However, buffalograss was more salt-tolerant than blue grama at the vegetative growth stage. Variations of salinity tolerance were observed within buffalograss cultivars and blue grama ecotypes, especially during the seed germination stage. Overall, buffalograss appeared to be salt-sensitive during germination but moderately salt-tolerant at the mature stage. However, blue grama was more salt-tolerant at the germination stage than the mature stage. Noticeable differences in salinity tolerance were observed between different germplasms. Therefore, salt tolerance of buffalograss and blue grama may be improved through turfgrass breeding efforts.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Mingying Xiang ◽  
Justin Q. Moss ◽  
Dennis L. Martin ◽  
Kemin Su ◽  
Bruce L. Dunn ◽  
...  

Bermudagrass (Cynodon sp.) is a highly productive, warm-season, perennial grass that has been grown in the United States for turfgrass, forage, pasture, rangeland, and roadside use. At the same time, many bermudagrass production and reclamation sites across the United States are affected by soil salinity issues. Therefore, identifying bermudagrass with improved salinity tolerance is important for successfully producing bermudagrass and for reclaiming salt-affected sites with saline irrigated water. In this project, the relative salinity tolerance of seven clonal-type bermudagrass was determined, including industry standards and an Oklahoma State University (OSU) experimental line. The experiment was conducted under a controlled environment with six replications of each treatment. Seven bermudagrass entries were exposed to four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively via subirrigation systems. The relative salinity tolerance among entries was determined by normalized difference vegetation index (NDVI), digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot dry weight (SW), visual rating (VR), and dark green color index (DGCI). Results indicated that there were variable responses to salinity stress among the entries studied. As salinity levels of the irrigation water increased, all evaluation criterion decreased, except LF. All entries had acceptable TQ when exposed to 15 dS·m−1. When exposed to 30 dS·m−1, experimental entry OKC1302 had less LF than all other entries except ‘Tifway’, while ‘Midlawn’ showed more LF than all the entries. Leaf firing ranged from 1.0 to 2.7 at 45 dS·m−1, where ‘Tifway’ outperformed all other entries. At 45 dS·m−1, the live green cover as measured using DIA ranged from 3.07% to 24.72%. The parameters LF, TQ, NDVI, DGCI, SW, and DIA were all highly correlated with one another, indicating their usefulness as relative salinity tolerance measurements.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Claudia Santibañez ◽  
Luz María de la Fuente ◽  
Elena Bustamante ◽  
Sergio Silva ◽  
Pedro León-Lobos ◽  
...  

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100 t ha-1dry weight, d.w.) and grape residues (200 t ha-1d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20 cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments.


2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Nayyeripasand ◽  
Ghasem Ali Garoosi ◽  
Asadollah Ahmadikhah

Abstract Background Rice is considered as a salt-sensitive plant, particularly at early vegetative stage, and its production is suffered from salinity due to expansion of salt affected land in areas under cultivation. Hence, significant increase of rice productivity on salinized lands is really necessary. Today genome-wide association study (GWAS) is a method of choice for fine mapping of QTLs involved in plant responses to abiotic stresses including salinity stress at early vegetative stage. In this study using > 33,000 SNP markers we identified rice genomic regions associated to early stage salinity tolerance. Eight salinity-related traits including shoot length (SL), root length (RL), root dry weight (RDW), root fresh weight (RFW), shoot fresh weight (SFW), shoot dry weight (SDW), relative water content (RWC) and TW, and 4 derived traits including SL-R, RL-R, RDW-R and RFW-R in a diverse panel of rice were evaluated under salinity (100 mM NaCl) and normal conditions in growth chamber. Genome-wide association study (GWAS) was applied based on MLM(+Q + K) model. Results Under stress conditions 151 trait-marker associations were identified that were scattered on 10 chromosomes of rice that arranged in 29 genomic regions. A genomic region on chromosome 1 (11.26 Mbp) was identified which co-located with a known QTL region SalTol1 for salinity tolerance at vegetative stage. A candidate gene (Os01g0304100) was identified in this region which encodes a cation chloride cotransporter. Furthermore, on this chromosome two other candidate genes, Os01g0624700 (24.95 Mbp) and Os01g0812000 (34.51 Mbp), were identified that encode a WRKY transcription factor (WRKY 12) and a transcriptional activator of gibberellin-dependent alpha-amylase expression (GAMyb), respectively. Also, a narrow interval on the same chromosome (40.79–42.98 Mbp) carries 12 candidate genes, some of them were not so far reported for salinity tolerance at seedling stage. Two of more interesting genes are Os01g0966000 and Os01g0963000, encoding a plasma membrane (PM) H+-ATPase and a peroxidase BP1 protein. A candidate gene was identified on chromosome 2 (Os02g0730300 at 30.4 Mbp) encoding a high affinity K+ transporter (HAK). On chromosome 6 a DnaJ-encoding gene and pseudouridine synthase gene were identified. Two novel genes on chromosome 8 including the ABI/VP1 transcription factor and retinoblastoma-related protein (RBR), and 3 novel genes on chromosome 11 including a Lox, F-box and Na+/H+ antiporter, were also identified. Conclusion Known or novel candidate genes in this research were identified that can be used for improvement of salinity tolerance in molecular breeding programmes of rice. Further study and identification of effective genes on salinity tolerance by the use of candidate gene-association analysis can help to precisely uncover the mechanisms of salinity tolerance at molecular level. A time dependent relationship between salt tolerance and expression level of candidate genes could be recognized.


Sign in / Sign up

Export Citation Format

Share Document