scholarly journals Lime potentials as biopreservative as alternative to chemical preservatives in pineapple, orange and watermelon juice blend

Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1878-1884
Author(s):  
A.F. Olaniran ◽  
R.O. Afolabi ◽  
H.E. Abu ◽  
A. Owolabi ◽  
Y.M. Iranloye ◽  
...  

The major challenge influencing fruits economic value is the relatively short shelf-life. This study preserved fruit juice blend from pineapple, watermelon and orange using lime juice as biopreservative comparing its effectiveness with ascorbic acid and citric acid as chemical preservatives during storage at ambient temperature (27±2oC) for five weeks. The acceptability of the juice by consumer, biochemical changes and microbial load was also evaluated on a weekly basis. From the results, all the samples were acceptable on a 9-point hedonic scale (8.70-8.90) with 1% lime biopreserved juice blend was the most preferred. This shows that that lime effectively controlled the rate at which increase pH and decrease of TTA occurred during storage by double-fold when compared with ascorbic and citric acid used in the study. A minimal decrease in pH of 0.75% was documented during the five weeks of study. The specific gravity of the juice was relatively table during storage except for the unpreserved juice. Lime addition at 2 and 4% effectively suppressed fungal growth in the juice for five weeks of storage. Lime juice added as biopreservative at 4% showed the best bacteriostatic and fungistatic performance while the consistent increase in the bacteria growth from 60×102 - 11×1010 CFU/mL was recorded in unpreserved at ambient temperatures during storage. Ascorbic acid and citric acid as preservative effectively inhibited microbial growth of bacterial and fungal for 2 weeks, followed by a steady increase from 16×101 - 17×103 , 20×102 - 62×102 and 20×102 - 36×104 ; 21×102 - 48×102 CFU/mL respectively. Low Bacterial count was recorded in juice preserved with 1% lime (70×101 CFU/mL), 2% lime preserved (41×102 CFU/mL) and 4% lime (13×101 CFU/mL) at week 4 and week 5 respectively. The study established that lime is a good biopreservative with antimicrobial effect can serve as a replacement for chemical preservatives.

Author(s):  
Vitthal Chopade ◽  
Kamlesh Mankuskar

Sugarcane juice is liquid extract as a drinking beverage in India, possesses therapeutic value. Stability or shelf life is very less due to spoilage or degradation of sugarcane juice because of presence of simple sugar in sugarcane juice. Microorganisms like bacteria prone to degradation of sugarcane juice. Which convert sucrose into dextran as deteriorating agent. Shelf life or stability can be improved by using natural preservatives also chemical preservatives; having a therapeutic value. In this article improvement of stability of sugarcane juice by using natural preservatives such as lemon extract, ginger extract, also may be moringa extract over the chemical preservatives. Citric acid in lemon extract acts as antimicrobial agent while ascorbic acid in ginger extract both improves stability of sugarcane juice. Stabilization of sugarcane juice improved by using naturally obtained preservatives up to several days with good quality.


1993 ◽  
Vol 56 (9) ◽  
pp. 801-807 ◽  
Author(s):  
L. GIANNUZZI ◽  
N. E. ZARITZKY

The effect of different concentrations of citric acid and ascorbic acid (applied individually or in mixture's) on microbial growth in potato homogenate was analyzed and compared to the sodium bisulfite action during storage at 4°C in low gaseous permeability films. These experiments allowed one to simulate the behavior of prepeeled potatoes but with a known amount of added preservative to evaluate additive or synergic effects. Total viable microorganisms, Enterobacteriaceae, Pseudomonas sp., Lactobacillus sp., molds, yeasts, Clostridium sulfite reducers, psychrotropic microorganisms, and aerobic and anaerobic viable spores were analyzed during storage time. Inhibition indexes produced by the tested preservatives were calculated for the different microorganisms. Sodium bisulfite solutions (100 ppm) had no inhibitory effect. Concentrations of 3,500 ppm citric acid and 10,000 ppm ascorbic acid showed antimicrobial action as well as mixtures of citric acid/ascorbic acid of the following compositions (in terms of total acids concentration): 2,700/2,000, 3,500/2,000, and 2,700/3,000 ppm. A higher effect on Enterobacteriaceae was observed in comparison with other microorganisms. The apparent synergic effect of these acids when they were applied together was demonstrated to be actually an additive effect when concentrations of undissociated acid in the mixtures were considered instead of total concentration.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1528
Author(s):  
Safaa Abd Zaid Abd Ali ◽  
Aurélie Joubert ◽  
Yves Andrès

Microbial growth onto HVAC filters was observed in real conditions with possible degradation of the indoor air quality. The filtration performance of marketed antimicrobial filters containing zinc pyrithione was tested under laboratory conditions and compared to that of similar filters with the same classification, F7 (EN779:2002). The filtration performance of the two tested filters during loading with PM10 particles was quantified in an experimental setup with filter pressure drop measurement and particle counting upstream and downstream of the filters. The microbial growth on the new and loaded filters, both contaminated with a microbial airborne consortium composed of two bacteria (Gram-positive and -negative) and fungi, was quantified by colony-forming units after conditioning the filters for a few days under controlled temperature (25 °C) and humidity (50% or 90% relative humidity). The results reveal that there was no degradation of the filtration performance of the filters treated with the antimicrobial agent. The efficiency of the antimicrobial treatment, i.e., the ability to inhibit the growth of microorganisms during the incubation period, was significant with the new filters regarding the fungal growth, but the results demonstrate that the antimicrobial treatment became inefficient with the loaded filters.


2020 ◽  
pp. 21-31 ◽  
Author(s):  
Johnpaul I. Agbaka ◽  
Charles N. Ishiwu ◽  
Ajibola N. Ibrahim

Aim: To study the synergistic effect of chemical preservatives on the keeping quality of soymilk. Study Design: Ten soymilk samples were prepared and treated with different concentrations of citric acid and sodium benzoate and stored at ambient conditions. Place and duration of Study: The present study was conducted at the Department of Food Science and Technology, Nnamdi Azikiwe University, Awka between March 2015 and June 2016 Methodology: Ten (10) soymilk samples were prepared. Soybean seeds (2 kg) that are free of dirt and stones were weighed and steeped in 4 L of tap water, a 12 h steeping regime was adopted. Each soymilk sample was formulated by adding different concentrations of sodium benzoate and citric acid, while the control sample had no treatment. All soymilk samples were then boiled at 75oC for 15 minutes and stored in storage bottles. Standard microbiological techniques were employed in the isolation and enumeration of potential spoilage organisms in soymilk samples. pH analysis was conducted throughout the storage period. Results: There was a decrease in pH of all soymilk samples with increasing storage time. pH at day 0 ranged between 6.2 to 7.2. Isolated bacteria in 10 soymilk samples included Streptococcus sp., Pseudomonas sp., Proteus sp., Bacillus spp., Staphylococcus aureus, Klebsiella sp., Escherichia coli, and Enterobacter species. However, results obtained showed that soymilk could keep up to 7 days at ambient temperature, encouraging the use of citric acid and sodium benzoate as chemical preservatives. Conclusion: In the present study, preservation of soymilk samples from a combination of citric acid and sodium benzoate which are chemical preservatives was found to be more effective than several organic preservatives. Hence, they represent an alternative source of chemical antimicrobial substances for use in food systems to prevent the growth of food borne microorganisms and extend the shelf-life of processed food.


2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Gülru Bulkan ◽  
Sitaresmi Sitaresmi ◽  
Gerarda Tania Yudhanti ◽  
Ria Millati ◽  
Rachma Wikandari ◽  
...  

Fruit and vegetable processing wastes are global challenges but also suitable sources with a variety of nutrients for different fermentative products using bacteria, yeast or fungi. The interaction of microorganisms with bioactive compounds in fruit waste can have inhibitory or enhancing effect on microbial growth. In this study, the antimicrobial effect of 10 bioactive compounds, including octanol, ellagic acid, (−)-epicatechin, quercetin, betanin, ascorbic acid, limonene, hexanal, car-3-ene, and myrcene in the range of 0–240 mg/L on filamentous fungi Aspergillus oryzae and Aspergillus niger were investigated. These fungi were both found to be resistant to all compounds except octanol, which can be used as a natural antifungal agent, specifically against A. oryzae and A. niger contamination. On the contrary, polyphenols (quercetin and ellagic acid), ascorbic acid, and hexanal enhanced A. niger biomass yield 28%, 7.8%, 16%, and 6%, respectively. Furthermore, 240 mg/L car-3-ene was found to increase A. oryzae biomass yield 8%, while a 9% decrease was observed at lower concentration, 24 mg/L. Similarly, up to 17% decrease of biomass yield was observed from betanin and myrcene. The resistant nature of the fungi against FPW bioactive compounds shows the potential of these fungi for further application in waste valorization.


1987 ◽  
Vol 57 (3) ◽  
pp. 331-343 ◽  
Author(s):  
D. Ballot ◽  
R. D. Baynes ◽  
T. H. Bothwell ◽  
M. Gillooly ◽  
J. Macfarlane ◽  
...  

1. The effects of the chemical composition of fruit juices and fruit on the absorption of iron from a rice (Oryza sativa) meal were measured in 234 parous Indian women, using the erythrocyte utilization of radioactive Fe method.2. The corrected geometric mean Fe absorptions with different juices varied between 0.040 and 0.129, with the variation correlating closely with the ascorbic acid contents of the juices (rs 0.838, P < 0.01).3. Ascorbic acid was not the only organic acid responsible for the promoting effects of citrus fruit juices on Fe absorption. Fe absorption from laboratory ‘orange juice’ (100 ml water, 33 mg ascorbic acid and 750 mg citric acid) was significantly better than that from 100 ml water and 33 mg ascorbic acid alone (0.097 and 0.059 respectively), while Fe absorption from 100 ml orange juice (28 mg ascorbic acid) was better than that from 100 ml water containing the same amount of ascorbic acid (0.139 and 0.098 respectively). Finally, Fe absorption from laboratory ‘lemon juice’ (100 ml orange juice and 4 g citric acid) was significantly better than that from 100 ml orange juice (0.226 and 0,166 respectively).4. The corrected geometric mean Fe absorption from the rice meal was 0.025. Several fruits had little or no effect on Fe absorption from the meal (0.013–0.024). These included grape (Vitis vinifera), peach (Prunuspersica), apple (Malus sylvestris) and avocado pear (Persea americana). Fruit with a mild to moderate enhancing effect on Fe absorption (0.03 1–0.088) included strawberry (Fragaria sp.) (uncorrected values), plum (Prunus domestica), rhubarb (Rheum rhaponticum), banana (Musa cavendishii), mango (Mangifera indica), pear (Pyrus cornmunis), cantaloup (Cucumis melo) and pineapple (Ananas comosus) (uncorrected values). Guava (Psidium guajava) and pawpaw (Carica papaya) markedly increased Fe absorption (0.126–0.293).5. There was a close correlation between Fe absorption and the ascorbic acid content of the fruits tested (rs 0.738, P < 0.0001). There was also a weaker but significant correlation with the citric acid content (rs 0.55, P < 0.03). Although this may have reflected a direct effect of citric acid on Fe absorption, it should be noted that fruits containing citric acid also contained ascorbic acid (rs 0.70, P < 0.002). Similarly, the negative correlation (rs –0.62, P < 0,008) between Fe absorption and the malic acid content of fruits may have been due to the fact that fruits with a high malic acid content tended to have low levels of ascorbic acid (rs–0.45, P < 0.06).6. These various results suggested that most fruits have only a limited effect on overall Fe nutrition. However, the presence of citrus fruit, guava or pawpaw would be expected to increase Fe absorption markedly from diets of low Fe availability.


1985 ◽  
Vol 48 (1) ◽  
pp. 35-38 ◽  
Author(s):  
S.W. RIZK ◽  
F.M. CLYDESDALE

Changes in chemical iron profile occurring from pH 2 to 6.5 in a wheat-soy blend, a corn-soy-milk mix, and a soy-extended beef patty were investigated. Iron solubility in these products, as affected by in vitro digestion with pepsin, was dependent on a combination of ligand, iron source, pH and food. The greatest solubilizing capacity of the ligands added was provided by ascorbic acid at pH 2 and 4, and by citric acid at pH 6. Improvements in percent soluble iron were related to pepsin digestion and the presumed appearance of protein degradation products.


Sign in / Sign up

Export Citation Format

Share Document