scholarly journals Pemanfaatan Kertas Bekas, Serabut Kelapa (Socos nucifera) dan Kulit Singkong (Manihot utilissima) Untuk Pembuatan Kertas Daur Ulang

2018 ◽  
Vol 14 (2) ◽  
pp. 65-70
Author(s):  
Zurorotul Munashifah ◽  
Heru Subaris Kasjono ◽  
Bambang Suwerda

Kalipoh Village, Ayah  Discrit Kebumen, Regency is a waste-producing area such as waste paper, coconut fibre and cassava peels that have not been well managed. The impact of this waste can cause environmental health problems. These three types of waste have cellulose content that can be utilized to make recycled paper. This study aims to determine water absorption, tensile strength, and community acceptance with pre-experimental research design posttest only design analyzed descriptively. The results showed that the best water absorption strength and paper tensile strength were a variation of 1: 1: 2 with a yield of 76 mm and 2,683 N / mm. Whereas based on the result of physical test and public acceptance that recycle paper of variation I have a slightly coarse texture, the fibre is slightly visible and the pale; variation II has a coarse texture, visible fibre and pale colour, while variation III has a rather coarse texture, rather visible fibre and vibrant colour. The community also deeply appreciates the innovation of recycled paper making.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. O. Adeosun ◽  
M. A. Usman ◽  
W. A. Ayoola ◽  
I. O. Sekunowo

Aluminum (Al) dross is a hazardous waste from the secondary smelting of aluminium industries, and safe disposal of this waste is a big challenge to these industries. Dumping of this waste is an environmental hazard to plants, animals, and even human beings. This study is aimed at improving the mechanical properties of polypropylene (PP) by adding Al dross in 2–50 wt% for particle sizes 53 μm and 150 μm. PP-Al-dross composite samples were cast, and ultimate tensile strength (UTS), impact resistance (IR), water absorption (WA), and density (D) tests were carried out. The results obtained show that UTS improved by 68% (at 15 wt% Al-dross addition), D increased by 54% (at 50 wt% Al-dross addition), and WA by 500% (at 8 wt% Al-dross addition) over the convectional PP. The impact resistance of the composite was found to be the same (68 J) with that of conventional PP at 15 wt% Al dross.


2020 ◽  
Vol 92 (1) ◽  
pp. 19-39
Author(s):  
Ewa Lubera ◽  
Krzaklewski Paweł

The aim of the work described here was to determine the rate of frost weathering for selected types of rock, and the manner in which this proceeds. The authors attempts to answer questions regarding progress with the disintegration of a given type of rock over time; the size and shape of weathered grains; the role played by fissures in rock and rock texture; and further relevant properties like compressive and tensile strength, porosity and water absorption. The rock samples used in laboratory testing were collected in the catchment area of the Chochołowski Stream in the Western Tatra Mountains of Poland. The seven types of rock analysed were white and brown granite, organodetric limestone, fine-grained conglomerate, dolomite breccia, quartzite sandstone and amphibolite. Samples were subjected to simulated frost weathering via the impact of repeated thermal cycles across a temperature range of -5 to +10°C. The simulation was carried out at the Low Temperatures Laboratory of the Institute of Geography and Spatial Management of Kraków’s Jagiellonian University, using a CI/1400/LT/2D cooling device. As testing was in progress, changes in the states of samples were determined through the measurement of dry and saturated mass and water absorption, as well as the speed at which an ultrasonic wave passed through. By reference to results for these measures, it was possible to calculate the frost weathering index after Matsuoke, i.e.:Rf= (Vp0-Vpk)/(Vp0*k) [cykle -1],where Vp0 is wave speed at cycle 0 (in km/s), Vpk is wave speed at cycle k (km/s) and k is the number of cycles. Rock dissolution tests and measurements of the products of weathering were also carried out. Values obtained for the index were used to rank the rocks tested for their resistance to frost weathering, as was the percentage of material in the initial mass that became subject to rock weathering. The least-resistant rock proved to be dolomite breccia, and the most-resistant amphibolites and quartzite sandstones. The rankings of other rocks varied in line with the indicative parameter referred to. The testing of physical properties suggested several reasons for high resistance to frost weathering among the analysed types of rock from the Western Tatras, i.e. the limited (<5%) open porosity noted for all types, limited water absorption, high compressive and tensile strength, compactness and homogeneity, low densities of fissures in samples in their initial state, almost complete filling of pores with matrix (e.g. in sandstone and conglomerate), re-filling of cracks (e.g. in limestone), and a significant component of resistant quartz. No effect of rock texture on resistance to frost weathering could be observed, but the presence of carbon matrix and carbonate rock fragments is important. The latter dissolve steadily, creating more favourable conditions for physical weathering (e.g. of amphibolites and conglomerates). The occurrence of mineral veins within rocks determines disintegration routes (e.g. in conglomerates). Given that rocks were subjected to an average of 850 repeated thermal cycles in the laboratory, the simulation achieved was of approx. 50 years of frost weathering under natural conditions in the study area. Experiments of this kind thus offer insight into processes running very slowly under natural conditions.


2016 ◽  
Vol 53 (3) ◽  
pp. 253-271 ◽  
Author(s):  
Hajar Yousefian ◽  
Denis Rodrigue

Nanocomposite foams based on Nylon 6 and nanocrystalline cellulose were prepared via extrusion and injection molding to study the effect of nanocrystalline cellulose concentration (0 to 5%), chemical foaming agent content (0, 1%, and 2%), and mold temperature (30℃ and 80℃) on the morphological, physical, and mechanical properties of the samples. Nanocrystalline cellulose content, especially between 1 and 3 wt%, was very effective in reducing the cell size and increasing the cell density of the foam structure. Nanocrystalline cellulose addition (0–5%) was found to increase density (4% for composites and 20% for foams), tensile strength (10% for composite and 13% for foams), tensile modulus (20% for composites and 34% for foams), and flexural modulus (37% for composites and 29% for foams), but decreased the impact strength (35–40% for composites and 20–40% for foams). Foaming agent addition (1%) was able to improve the specific tensile (10%) and flexural (12%) moduli, tensile strength (14%), elongation at break (6%), and impact strength (27%). Finally, higher mold temperature decreased skin thickness and, consequently, decreased the mechanical properties, mostly tensile strength of the foam samples (1% for composites and 18% for foams).


2015 ◽  
Vol 5 (1) ◽  
pp. 137
Author(s):  
Kristin B. Labasan ◽  
Aldrine Jay G. Espinosa ◽  
Rebecca C. Nueva Espana

<p>Fiber-reinforced polymer composites are composed of a polymer matrix (PE-PS) combined with a fiber (bamboo fibers) to provide conspicuous reinforcement. In light of recycling plastic and natural fibers, the research aim to fabricate and characterize bamboo fiber-reinforced polyethylene-polystyrene composites using glycerol as plasticizer. Specifically, the study investigated the effect on the physical and mechanical properties and water absorption of the composites by varying the following parameters: substitution of glycerol instead of the usual cooking oil in fabrication of DRM, and bamboo fiber loading. Using 1:3 PE-PS ratio, glycerol incorporation was done in DRM by melting together plastic and styrofoam wastes using a densifying machine at 150˚C. DRM samples with 70% (w/w) glycerol incorporation were then compared to the original DRM samples with 70% (w/w) cooking oil. The modified DRM were then loaded with 1, 2 and 3% bamboo fiber-reinforcement using a two-roll mill at 200˚C and compression molding machine at 200˚C and 50 kg/cm2 for 5 mins in the aluminium mold. The composites were characterized by Universal Testing Machine (tensile strength) following the ASTM standard D638. In addition, water absorption of the fabricated composites was tested using the standard method specified by ASTM D570.The bamboo fiber-reinforced polyethylene-polystyrene composites at 1:3 PE: PS ratio rendered better tensile strength and less water absorbed using 70% (w/w) glycerol as plasticizer and at 1% bamboo fiber loading. For future studies, it is recommended to study the impact of different parameters (glycerol percentage, time, temperature, pressure, fiber type and dimensions, fiber extraction, etc.) in the fabrication of the fiber-reinforced recycled plastic composites. Other characterizations of the fabricated plastic composite including thermal properties, leaching and biodegradation experiments and compressive and flexural strengths can also be done.</p><p>Keywords: Fiber-reinforced polymer, plasticizer, composites.</p>


2021 ◽  
Vol 7 (9) ◽  
pp. 1582-1593
Author(s):  
Redha Benali ◽  
Mekki Mellas ◽  
Mohamed Baheddi ◽  
Tarek Mansouri ◽  
Rafik Boufarh

The objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete. Doi: 10.28991/cej-2021-03091745 Full Text: PDF


2021 ◽  
Vol 83 (5) ◽  
pp. 119-127
Author(s):  
Nazri Huzaimi Zakaria ◽  
Ridhwan Jumaidin ◽  
Mohd Adrinata Shaharuzaman ◽  
Mohd Rody Mohamad Zin ◽  
Fudhail Abdul Munir

The awareness to produce biodegradable composite has increased rapidly because of non-toxic and reachable. However, fully biodegradable composite production still low due to the matrix used in the composite is not biodegradable. Thus, this paper presents the study on mechanical and physical properties for the mixtures of corn starch (CS) with different weight percentages of glycerol as thermoplastics corn starch (TPCS) matrix. The selected glycerol contents were at 30, 35 and 40 wt%. The mixtures of CS and different weight percentages of glycerol were made using hot compression moulding at 165°C for 15 minutes to produce the TPCS samples. The mechanical and physical properties were done: the tensile test, hardness test, water absorption test, moisture content test and microstructure analysis under the Scanning Electron Microscopes (SEM). Incorporating 30 wt% loadings of glycerol has increased the tensile strength and hardness. The results show that the addition of higher than 30 wt% loadings of glycerol has decreased the tensile strength and hardness of the TPCS. The physical test results for 30 wt% loadings of glycerol for water absorption test and moisture content show the lowest value than other TPCS samples. However, the density value for all wt% loadings of glycerol does not offer much difference. It reveals that 30 wt% loadings of glycerol in the mixture of CS have shown a good interaction in the TPCS mechanical properties. Based on this finding, the TPCS has huge potential to be used as a matrix to develop a fully biodegradable composite.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2212
Author(s):  
Worawat Poltabtim ◽  
Ekachai Wimolmala ◽  
Teerasak Markpin ◽  
Narongrit Sombatsompop ◽  
Vichai Rosarpitak ◽  
...  

The potential utilization of wood/polyvinyl chloride (WPVC) composites containing an X-ray protective filler, namely bismuth oxide (Bi2O3) particles, was investigated as novel, safe, and environmentally friendly X-ray shielding materials. The wood and Bi2O3 contents used in this work varied from 20 to 40 parts per hundred parts of PVC by weight (pph) and from 0 to 25, 50, 75, and 100 pph, respectively. The study considered X-ray shielding, mechanical, density, water absorption, and morphological properties. The results showed that the overall X-ray shielding parameters, namely the linear attenuation coefficient (µ), mass attenuation coefficient (µm), and lead equivalent thickness (Pbeq), of the WPVC composites increased with increasing Bi2O3 contents but slightly decreased at higher wood contents (40 pph). Furthermore, comparative Pbeq values between the wood/PVC composites and similar commercial X-ray shielding boards indicated that the recommended Bi2O3 contents for the 20 pph (40 ph) wood/PVC composites were 35, 85, and 40 pph (40, 100, and 45 pph) for the attenuation of 60, 100, and 150-kV X-rays, respectively. In addition, the increased Bi2O3 contents in the WPVC composites enhanced the Izod impact strength, hardness (Shore D), and density, but reduced water absorption. On the other hand, the increased wood contents increased the impact strength, hardness (Shore D), and water absorption but lowered the density of the composites. The overall results suggested that the developed WPVC composites had great potential to be used as effective X-ray shielding materials with Bi2O3 acting as a suitable X-ray protective filler.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Sign in / Sign up

Export Citation Format

Share Document