scholarly journals Study of Nanofiber Formation by Injecting Polymeric Solutions Inside Intense Electric Fields Using Different Electrode Configurations

2010 ◽  
Vol 5 (2) ◽  
pp. 148-153
Author(s):  
R. Furlan ◽  
S. V. Arroyo ◽  
R. O. F. Torres ◽  
J. A. M. Rosado ◽  
A. N. R. Da Silva

Electrospinning has been considered a straightforward way of producing nanofibers. In this work we are analyzing non-conventional approaches of the electrospinning process to better understand and explore the effect of electrostatic interactions. The processes we are investigating include the insertion of polymer inside the electric field keeping the capillary for polymer injection at a floating potential. Also, we are investigating different electrode configurations including: same as electrospinning (with and without polarization of the capillary for polymer injection), parallel macro electrodes and, microelectrodes (with tip to tip alignment). Image analysis reveals the occurrence of instabilities/oscillations of the polymer flow (caused by redistribution of charges). Improvement of polymer flow directionality and fiber diameter reduction are observed in comparison with conventional electrospinning. Fiber orientation can be obtained using parallel macro electrodes and micro electrodes.

2014 ◽  
Vol 852 ◽  
pp. 624-628 ◽  
Author(s):  
Yuan Sheng Zheng ◽  
Yong Chun Zeng

Jet repulsion is the most difficult issue in the multineedle electrospinning process. This study aims at reducing the jet pulsion by designing the spinneret. Three different multijet electrospinning configutations are used to study the jet repulsion in multijet electrospinning process. The experimental results shows that adding a PTFE cylinder to the traditional multineedle electrospinning setup can reduce the jet repulsion, but the diameter and irregularity of the resultant fiber other increased. A needleless electrospinning setup using a multihole plate to replace the needles can reduce jet repulsion effectively, reduce fiber diameter and irregularity as well. And the electric fields of the three electrospinning configurations are simulated by finite element method to explain the experiment results.


Author(s):  
Kamal Sarkar ◽  
Palmira Hoos ◽  
Alberto Urias

Taylor cones are integral parts in many important applications like electrospinning and electrospray mass spectroscopy. A better understanding of this complex phenomenon of Taylor cone is critical for better control of these processes. As an example, if it is possible to identify and prioritize the roles of fluid characteristics and externally applied electric field, it might be easier to target and control the diameters of nanofibers in an electrospinning process. Under the influence of high electric fields, Taylor cones are formed by a number of liquids including many polymeric solutions. Because of small spatial (microns and below) and temporal (microseconds and below) scales, it is difficult to experimentally study the transient formation of Taylor cones. A number of theoretical analyses have been done under simplifying assumptions like uniform electric field, constant electrohydrodynamic behaviors of the fluid, stationary droplet, etc. Initial Taylor formulation included the introduction of “leaky dielectric” that accumulated charges only on the surface for certain dielectric fluids. Yarin et al. later developed analysis for stationary droplets assuming them to be “perfectly conducting”. To simulate the electrospinning process, the formulation needs the ability to analyze moving boundary conditions, complex fluid properties, three dimensional geometry, and nonlinear coupling between air and liquid, among others. To overcome some of the assumptions of theoretical analyses and as another complementary tool, a computer simulation method was proposed using a commercially available software. In this investigation, much studied aqueous polyethylene oxide (PEO) solution was used to study formation and distortion of Taylor cones. An initial velocity was given to the fluid from the tip of a nozzle and an appropriate electric field was applied to form the Taylor cones. Literature values were used for flow, fluid, and electrical characteristics of the solution. By appropriately manipulating fluid velocities and electric fields, simulations were successful to both replicate the classical cone and distort it to various degrees. These formation and distortion of Taylor cones were similar to reported experimental results. While the numerical and experimental Taylor cones were significantly different in sizes, nondimensional shapes, and sizes of both the results were strikingly similar. Velocities of the fluid in the jet jumped almost 50 times to meters/second as was experimentally observed. Unlike theoretical solutions, the simulation results showed the interaction of the electric fields between the air and advancing fluid tip.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
George G. Chase ◽  
Jackapon Sunthorn Varabhas ◽  
Darrell H Reneker

Electrospinning from a single jet is commonly used to produce very fine polymeric fibers. The mass production rate of the electrospinning from a single jet is relatively low. Alternative methods to launch multiple jets and increase production rates are described here. Few variations on the electrospinning process are reported in literature. In this paper we discuss three novel methods to launch polymer jets via electric fields. Multiple pendant drop electrospinning jets from porous tubes produced fibers with average fiber diameter smaller than 400 nanometers. Bubble launched electrospinning and blown-film methods also result in multiple jets but of larger fiber diameters. These processes have not been optimized to produce small fibers. The three methods here have production rates on the order of 0.03 to 9.00 g/hr per jet. These methods should be scalable.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2098
Author(s):  
Tomas Kalous ◽  
Pavel Holec ◽  
Jakub Erben ◽  
Martin Bilek ◽  
Ondrej Batka ◽  
...  

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.


2020 ◽  
Vol 16 (1) ◽  
pp. 47-56
Author(s):  
I. Sriyanti ◽  
L. Marlina ◽  
J. Jauhari

The Cromaloena odorata (COE) contains phenols, flavonoids, tannins, alkaloids, saponins, steroids that possess diverse therapeutic effects. However, COE has poor solubility in water and poor absorbtion in the body. Incorporation of COE in nanofiber system is a promising way to increase CEO solubility. One of the method to produce nanofiber is electrospinning. The electrospinning process there are three of the most important process parameters are applied flowrate, voltage and TCD. In this study we developed optimized condition for electrospinning process of polyvinyl alcohol (PVA)/CEO and their characterization. The Scanning electron microscopy (SEM) analysis showed that modification of flowrate and TCD did not affect the morphology of PVA and COE fiber. However fiber diameter decreased when lower flowrate, higher voltage was applied, and TCD. Fourier Transform Infrared (FTIR) study was conducted to identify possible intermolecular interaction between PVA/COE that has potential application as antimicrobial wound dressing.


2020 ◽  
Vol 9 (1) ◽  
pp. 9-19
Author(s):  
Ida Sriyanti ◽  
Meily P Agustini ◽  
Jaidan Jauhari ◽  
Sukemi Sukemi ◽  
Zainuddin Nawawi

The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors


2021 ◽  
Vol 878 ◽  
pp. 56-61
Author(s):  
Joel L. Villanueva ◽  
Gabriel Angelo Tapas ◽  
Jezza B. Bayot ◽  
Menandro C. Marquez ◽  
Ruth R. Aquino

Electrospinning is one method to produce nanosized materials in a form of fibers with a large variety of polymeric solutions. In this research, Polyacrylonitrile (PAN) dissolved in N,N-Dimethylformamide (DMF) as the primary solvent, loaded with keratin protein solution, was blended using the said fabrication method to change its properties. The loading of the keratin solution concentrates varied from 5%, 7%, and 10% relative to the volume of the solution. The PAN-keratinnano substances were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV), and Galvanostatic Cycling with Potential Limitation (GCPL) to illustrate the properties of the fiber. The SEM micrographs showed that upon adding keratin into the PAN the diameter lengths of the imaged fibers were still nanofiber. As the viscosity of the solution is increased, the beads become bigger, the average distance between beads and the fiber diameter increases, and the shape of the beadings changes from spherical to spindle-like. In addition, CV and GCPL revealed that as the potential scan rate is being increased, the surrounded area of the CV also increases. The presence of redox peaks implies that a faradaic process occurs. The migration and diffusion of ions can be supported by the carbonized fibers. GCPL shows the triangular shape with symmetric charging and discharging slopes at a current density of 0.5mah, 1mah, 1.5mah and 2.5mah, confirming that the electrodes behave as a pure electric double layer capacitor (EDLC).


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1526 ◽  
Author(s):  
Ronaldo P. Parreño ◽  
Ying-Ling Liu ◽  
Arnel B. Beltran

This study demonstrated the processability of sulfur copolymers (SDIB) into polymer blend with polybenzoxazines (PBz) and their compatibility with the electrospinning process. Synthesis of SDIB was conducted via inverse vulcanization using elemental sulfur (S8). Polymer blends produced by simply mixing with varying concentration of SDIB (5 and 10 wt%) and fixed concentration of PBz (10 wt%) exhibited homogeneity and a single-phase structure capable of forming nanofibers. Nanofiber mats were characterized to determine the blending effect on the microstructure and final properties. Fiber diameter increased and exhibited non-uniform, broader fiber diameter distribution with increased SDIB. Microstructures of mats based on SEM images showed the occurrence of partial aggregation and conglutination with each fiber. Incorporation of SDIB were confirmed from EDX which was in agreement with the amount of SDIB relative to the sulfur peak in the spectra. Spectroscopy further confirmed that SDIB did not affect the chemistry of PBz but the presence of special interaction benefited miscibility. Two distinct glass transition temperatures of 97 °C and 280 °C indicated that new material was produced from the blend while the water contact angle of the fibers was reduced from 130° to 82° which became quite hydrophilic. Blending of SDIB with component polymer proved that its processability can be further explored for optimal spinnability of nanofibers for desired applications.


2016 ◽  
Vol 18 (48) ◽  
pp. 33310-33319 ◽  
Author(s):  
Winarto Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

Under an electric field, water prefers to fill CNTs over ethanol, and electrostatic interactions within the ordered structure of the water molecules determine the separation effects.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2086
Author(s):  
Pedro J. Rivero ◽  
Iker Rosagaray ◽  
Juan P. Fuertes ◽  
José F. Palacio ◽  
Rafael J. Rodríguez

In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters—such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability—have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.


Sign in / Sign up

Export Citation Format

Share Document