Effect of Precipitation Characteristics on Spatial and Temporal Variations of Landslide in Kermanshah Province in Iran

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Landslide can be defined as the mass movement of sloping slopes under the influence of mass gravity and its stimuli such as earthquakes, floods and flood plains. This phenomenon is one of the natural hazards that every year causes a lot of financial and financial losses in mountainous, rain-fed and seismic areas. Detection of time and the magnitude of landslides are necessary to understand the causes of landslide and to warn potential hazards. In this research, the amount of landslide displacement in Kermanshah province was evaluated by the characteristics of rainfall. To this end, a network of fixed points in and out of the slipping mass of 20 points was created to monitor the amount of displacement on different slip load users and the amount of displacement of each point in 5 time intervals using the Global Positioning System for two-dimensional GPS measurement. The results of the 511-day follow-up showed that the total horizontal displacement of the moving points in the 5 intervals measured at 1658 mm has a monthly displacement rate of 112 mm. Also, the total vertical displacement of moving points at the same time is 899 mm, with a monthly movement rate of 71 mm. Then, precipitation variances such as rainfall, rainfall, precipitation duration, maximum rainfall intensity in the intervals of 10, 20, 30 and 60 minutes and the average rainfall intensity were calculated and extracted for each of the 5 time periods. The drawing of the vectors of points on the topographic map of the area indicated that the direction of mass movement is in the direction of elevation gradient of the region. The results showed that only the precipitation severity with the landslide had a good correlation. The landslide movement had the highest correlation with average rainfall intensity (R = 0.85) and with maximum 30 minutes rainfall (R = 0.67), respectively, and other rainfall characteristics like amount, duration, and type of rainfall had not significantly correlated with movement of landslides.

2020 ◽  
Vol 81 (9) ◽  
pp. 1961-1971
Author(s):  
Hongqin Xue ◽  
Li Zhao ◽  
Xiaodong Liu

Abstract An extensive field survey was conducted in four types of road area to study heavy metals in road runoff. Eleven rainfall events were monitored from February 2011 to March 2012, which were classified into four categories according to the relationship between peak of the rainfall amount, rainfall duration, and average rainfall intensity. Runoff samples were collected from overpass sections, college areas, residential areas, and road sidewalks. Heavy metal concentrations were obtained to investigate the outflow laws governing heavy metals in runoff. The concentration fluctuations of seven heavy metals were monitored to assess the influence of rainfall characteristics on metal concentrations. To estimate the impact of heavy metals on the water environment, the event mean concentrations (EMCs) were determined to describe the overall pollution degree of heavy metal in runoff, and then the EMC values of heavy metals in runoff were compared with surface water environmental quality standard thresholds. The results indicate that the EMC values of heavy metals varied widely in different rainfall fields and under the same rainfall at different sampling points. Average rainfall intensity has a significant impact on the EMC of heavy metal outflow, followed by maximum rainfall intensity and rainfall amount.


2015 ◽  
Vol 9 (2) ◽  
pp. 90
Author(s):  
Ryan Wahyu Adi Zulfikar, Moch. Suaib Reiza, Suhartono

Six hectares Chandra Kirana Regency comprises 223 units. It needs a proper 1854 m drainage system completed with run-off water tanks to avoid it from floods.The objective of the study is to design the drainage system and run-off water tanks able to control the rainwater completed with the implementation cost and time.Site plan, topographic map, and rainfall data were needed to design. Rainfall data from 3 nearby stations: Singosari, Jabung, and Blimbing from 1991-2010 were analyzed to find out the maximum rainfall data and average rainfall regions using Mean Algebra. Log Pearson III was employed to obtain the rainfall, Mononobe method was for the rainfall intensity.The addition of rain water to waste water results in 0,00004 m/sec. cumulative discharge. Based on the result, and 0,5 m diameter culvert rings are designed. 1 m diameter and 2 m deep run-off water tank is of precast concrete. 93 work days implementation time at IDR  1.061.479.450,00.Keywords: design, drainage system, proper, rainwater, water tank 


Soil Research ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 371 ◽  
Author(s):  
J. E. Holland ◽  
T. H. Johnston ◽  
R. E. White ◽  
B. A. Orchard

For many years, the poor physical and hydraulic properties of the soils in south-western Victoria have restricted crop production due to waterlogging. In this region of predominantly winter rainfall, raised beds have become popular with farmers to overcome these difficulties; however, little has been reported on the hydrology of raised beds compared with other tillage systems for cropping in the rain-fed environment of south-western Victoria. This study measured rainfall characteristics, runoff volumes, and soil properties such as the soil water content, bulk density, and hydraulic conductivity for three tillage treatments (raised beds, conventional cultivation, and deep cultivation) over 6 years on a Sodosol at a field site near Geelong, Victoria. Runoff was regressed against rainfall variables such as the amount per event, hours of rainfall, rainfall intensity, and maximum rainfall intensity to determine the significance of any differences between the treatments. The relationship between runoff and rainfall amount was best described with an exponential model. Raised beds significantly increased the amount of runoff relative to the other treatments when above-average rainfall was received, but there was little difference in runoff in years of below-average rainfall. No consistent effect of runoff on crop biomass was detected nor could any differences in runoff be attributed to differences in soil water content, hydraulic conductivity, and bulk density between treatments. The most important factor appeared to be the furrows between the raised beds, which acted as conduits for the flow of surface water during the larger storm events. During such events, runoff is an important hydrological process in cropping land in south-western Victoria.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshifumi Nogawa ◽  
Masayasu Saito ◽  
Naomichi Murashima ◽  
Yoshiyuki Takayama ◽  
Atsuro Yokoyama

Abstract Background Implant-supported removable partial dentures (ISRPDs) are an effective treatment for partially edentulous patients. ISRPDs improve patients’ satisfaction and oral function to a greater extent than RPDs by improving denture stability and enhancing support. However, the effect of a type of direct retainer on displacement of the abutment teeth and dentures in ISRPDs remains unclear. Therefore, we made a resin mandibular model of unilateral mandibular distal-extension partial edentulism for mechanical simulation and compared the dynamic behavior of the abutment teeth and the denture base among different tooth-borne retainers with various rigidities for RPDs and ISRPDs. Methods A resin mandibular model for mechanical simulation that had unilateral mandibular distal-extension edentulism and was missing the first molar, second molar, first premolar, and second premolar, and a denture fabricated from the patient’s computed tomography images were used. Three types of direct retainers with different connecting rigidities were evaluated. The vertical displacement of the denture base and buccal and lingual sides and the mesial displacement of the abutment teeth were measured. Results Regardless of the rigidity of the direct retainers and loading positions, the displacement of the denture bases in the ISRPDs was significantly smaller than that in the RPDs (P < 0.001). There was no significant difference in vertical displacement of the denture bases among direct retainers with various connecting rigidities in the ISRPDs. Conversely, horizontal displacement of the abutment teeth in both the RPDs and ISRPDs tended to be larger with the cone crown telescope, which has high rigidity, than with the cast cingulum rest and wire clasp, which have much lower rigidities. Conclusion Our results suggested that cast cingulum rest and wire clasps as direct retainers are appropriate ISRPDs to minimize denture movement and suppress displacement of the remaining teeth in patients with unilateral mandibular distal-extension partial edentulism.


2021 ◽  
Vol 5 (1) ◽  
pp. 11-21
Author(s):  
Sangay Gyeltshen ◽  
Krisha Kumar Subedi ◽  
Laylo Zaridinova Kamoliddinovna ◽  
Jigme Tenzin

The study assessed the accuracies of globally available Digital Elevation Models (DEM’s) i.e., SRTM v3, ASTER GDEM v2 and ALOS PALSAR DEM with respect to Topo-DEM derived from topographic map of 5m contour interval. 100 ground control points of the elevation data were collected with the help of kinematic hand held GNSS (Global Navigation Satellite System), randomly distributed over the study area. The widely used RMSE statistic, NCC correlation and sub-pixel-based approach were applied to evaluate the erroneous, correlation, horizontal and vertical displacement in terms of pixels for the individual Digital Elevation Model. Following these evaluations, SRTM DEM was found to be highly accurate in terms of RMSE and displacement compared to other DEMs. This study is intended to provide the researchers, GIS specialists and the government agencies dealing with remote sensing and GIS, a basic clue on accuracy of the DEMs so that the best model can be selected for application on various purposes of the similar region.


1934 ◽  
Vol 24 (4) ◽  
pp. 345-384 ◽  
Author(s):  
Vincent P. Gianella ◽  
Eugene Callaghan

Summary The Cedar Mountain, Nevada, earthquake took place at about 10h 10m 04s p.m., December 20, 1932. It was preceded by a foreshock noted locally and followed by thousands of aftershocks, which were reported as still continuing in January 1934. No lives were lost and there was very little damage. The earthquake originated in southwest central Nevada, east of Mina. A belt of rifts or faults in echelon lies in the valley between Gabbs Valley Range and Pilot Mountains on the west and Cedar Mountain and Paradise Range on the east. The length of this belt is thirty-eight miles in a northwesterly direction, and the width ranges from four to nine miles. The rifts consist of zones of fissures which commonly reveal vertical displacement and in a number of places show horizontal displacement. The length of the rifts ranges from a few hundred feet to nearly four miles, and the width may be as much as 400 feet. The actual as well as indicated horizontal displacement is represented by a relative southward movement of the east side of each rift. The echelon pattern of the rifts within the rift area indicates that the relative movement of the adjoining mountain masses is the same. The direction of relative horizontal movement corresponds to that along the east front of the Sierra Nevada at Owens Valley and on the San Andreas rift.


2008 ◽  
Vol 12 (2) ◽  
pp. 523-535 ◽  
Author(s):  
M. López-Vicente ◽  
A. Navas ◽  
J. Machín

Abstract. The Mediterranean environment is characterized by strong temporal variations in rainfall volume and intensity, soil moisture and vegetation cover along the year. These factors play a key role on soil erosion. The aim of this work is to identify different erosive periods in function of the temporal changes in rainfall and runoff characteristics (erosivity, maximum intensity and number of erosive events), soil properties (soil erodibility in relation to freeze-thaw processes and soil moisture content) and current tillage practices in a set of agricultural fields in a mountainous area of the Central Pyrenees in NE Spain. To this purpose the rainfall and runoff erosivity (R), the soil erodibility (K) and the cover-management (C) factors of the empirical RUSLE soil loss model were used. The R, K and C factors were calculated at monthly scale. The first erosive period extends from July to October and presents the highest values of erosivity (87.8 MJ mm ha−1 h−1), maximum rainfall intensity (22.3 mm h−1) and monthly soil erosion (0.25 Mg ha−1 month−1) with the minimum values of duration of erosive storms, freeze-thaw cycles, soil moisture content and soil erodibility (0.007 Mg h MJ−1 mm−1). This period includes the harvesting and the plowing tillage practices. The second erosive period has a duration of two months, from May to June, and presents the lowest total and monthly soil losses (0.10 Mg ha−1 month−1) that correspond to the maximum protection of the soil by the crop-cover ($C$ factor = 0.05) due to the maximum stage of the growing season and intermediate values of rainfall and runoff erosivity, maximum rainfall intensity and soil erodibility. The third erosive period extends from November to April and has the minimum values of rainfall erosivity (17.5 MJ mm ha−1 h−1) and maximum rainfall intensity (6.0 mm h−1) with the highest number of freeze-thaw cycles, soil moisture content and soil erodibility (0.021 Mg h MJ−1 mm−1) that explain the high value of monthly soil loss (0.24 Mg ha−1 month−1). The interactions between the rainfall erosivity, soil erodibility, and cover-management factors explain the similar predicted soil losses for the first and the third erosive periods in spite of the strong temporal differences in the values of the three RUSLE factors. The estimated value of annual soil loss with the RUSLE model (3.34 Mg ha−1 yr−1) was lower than the measured value with 137Cs (5.38 Mg ha−1 yr−1) due to the low values of precipitation recorded during the studied period. To optimize agricultural practices and to promote sustainable strategies for the preservation of fragile Mediterranean agrosystems it is necessary to delay plowing till October, especially in dryland agriculture regions. Thus, the protective role of the crop residues will extend until September when the greatest rainfall occurs together with the highest runoff erosivity and soil losses.


2012 ◽  
Vol 3 ◽  
pp. 17-23 ◽  
Author(s):  
Rosmina A. Bustami ◽  
Nor Azalina Rosli ◽  
Jethro Henry Adam ◽  
Kuan Pei Li

 In the process of a design rainfall, information on rainfall duration, average rainfall intensity and temporal rainfall pattern is important. This study focuses on developing a temporal rainfall pattern for the Southern region of Sarawak since temporal pattern for Sarawak is yet to be available in the Malaysian Urban Storm Water Management Manual (MSMA), which publishes temporal pattern for design storms only for Peninsular Malaysia. The recommended technique by the Australian Rainfall and Runoff (AR&R) known as the ‘Average Variability Method’ and method in Hydrological Procedure No.1-1982 are used to derive design rainfall temporal pattern for the study. Rainfall data of 5 minutes interval from year 1998 to year 2006 for 7 selected rainfall stations in the selected region is obtained from Department of Irrigation and Drainage (DID). The temporal rainfall patterns developed are for 10 minutes,15 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes and 360 minutes duration. The results show that Southern region of Sarawak has an exclusive rainfall pattern, which is different from the pattern developed for Peninsular Malaysia.


2021 ◽  
Vol 11 (16) ◽  
pp. 7577
Author(s):  
Lin Wu ◽  
Xiedong Zhang ◽  
Wei Wang ◽  
Xiancong Meng ◽  
Hong Guo

Train vibration from closely aligned adjacent tunnels could cause safety concerns, especially given the soaring size of the tunnel diameter. This paper established a two-dimensional discrete element model (DEM) of small (d = 6.2 m) and super-large (D = 15.2 m) diameter cross-river twin tunnels and discussed the dynamic characteristics of adjacent tunnels during the vibration of a train that runs through the tunnel at a speed of 120 km/h. Results in the D tunnel showed that the horizontal walls have the same horizontal displacement (DH) and the vertical walls have the same vertical displacement (DV). The stress state of the surroundings of the D tunnel is the decisive factor for DH, and the distance from the vibration point to the measurement point is the decisive factor for DV. Results in the comparison of the d and D tunnels showed that the D tunnel is more stable than the d tunnel with respect to two aspects: the time the tunnel reaches the equilibrium state and the vibration amplitude of the structure’s dynamic and static responses. The dynamic characteristic of the d and D tunnel is significantly different. This research is expected to guide the design and construction of large diameter twin tunnels.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


Sign in / Sign up

Export Citation Format

Share Document