scholarly journals ADA Solve the Cubic Equation in a New Method with Engineering Application

2020 ◽  
Vol 13 (3) ◽  
pp. 223-231
Author(s):  
Abdullah Dhayea Assi

         Up to date the cubic equation or matrix tensor is consisting of nine values ​​such as stress tensor that turns into the cubic equation which has been used for solving classic method. This is to impose an initial root several times to get it when achieves the equation and any other party is zero. Then dividing the cubic equation on the equation of the root. After that dividing the cubic equation on the equation of the root and using the classical method to find the rest of the roots. This is a very difficult issue, especially if the roots are secret or large for those who are looking in a difficult field or even for those who are in the examination room. In this research, two equations were reached, one that calculates the angle and the other that calculates the three roots at high accuracy without any significant error rate. By taking advantage of the traditional method, not by imposing a value to get the root of that equation, but by imposing an equation to get the solution equation that gives the value of that root. After imposing that equation, the general equation was derived from which that calculated the three roots directly and without any attempts. The angle that was implicitly derived during the derive of the main equation is calculated by taking advantage of the constants that do not change (invariants) for the matrix tensor (T).

2017 ◽  
Vol 7 (1) ◽  
pp. 43-52
Author(s):  
Mochamad Tamim Ma’ruf

One-solving methods and techniques necessary to avoid inefficiencies and not economic costs as well as reduce the cost of housing construction is the method of Value Engineering. Value engineering is a method and cost control techniques to analyze a function to its value at the lowest cost alternative (most economical) without reducing the quality desired.At the writing of this study used a comparison method by comparing the initial design to the design proposal of the author. In the housing projects Upgrading Tirto Penataran Asri type 70, the application of Value Engineering conducted on the job a couple walls and roofs pair by replacing some work items with a more economical alternative but does not change the original function and high aesthetic level and still qualify safe. For that performed the step of determining a work item, the alternative stage, the analysis stage, and the stage of recommendations to get a Value Engineering application and cost savings against the wall a couple of work items and partner roof.The proposed design as compared to the initial design. Work items discussed was the work of a couple wall having analyzed obtained savings of Rp. 2,747,643.56 and the work of the roof pair obtained savings of Rp. 2,363,446.80. Thus the total overall savings gained is Rp 5,111,090.36 or savings of 0048%.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


1955 ◽  
Vol 59 (535) ◽  
pp. 506-509
Author(s):  
A. M. Dobson

The Classical method of solution of the stability of an axially–loaded continuous beam is by means of the three moments equation, using the Berry Functions, which are functions of the axial load. As the axial load approaches a value equal to the critical value for a pin–jointed beam, the Berry Functions tend to infinity, and the use of the three moments equations —(i. e. treating the end fixing moments as the independent variables)—leads to certain difficulties in the complete solution of the problem.The major difficulty lies in the question of stability. The critical value is determined by the vanishing of the determinant of the coefficients of the fixing moments in the three moments equations. This value could be found by plotting the determinant against end load (c. f. Pippard and Pritchard). However, in a problem involving a large number of bays, the calculation necessary to do this is likely to be considerable, for there may be many branches to the curve.


2018 ◽  
Vol 2 ◽  
pp. 145-154 ◽  
Author(s):  
Viviane Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano Jr ◽  
Vanderley Moacyr John

Vegetable fibers produced from agroindustrial resources in the macro, micro and nanometric scales have been used as reinforcement in cementitious materials. The cellulosic pulp, besides being used as the reinforcing element, is also the processing fiber that is responsible for the filtration system in the Hatcheck method. On the other hand, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In the hybrid reinforcement, with micro and nanofibers, the cellulose performs bonding elements with the matrix and acts as stress transfer bridges in the micro and nano-cracking network with the corresponding strengthening and toughening of the cementitious composite. Some strategies are studied to mitigate the degradation of the vegetable fibers used in cost-effective and non-conventional fiber cement, as well as to reach a sustainable fiber cement production. As a practical example, the accelerated carbonation curing at early age is a developing technology to increase the durability of composite materials: it decreases porosity, promotes a higher density in the interface generating a good fiber–matrix adhesion and a better mechanical behavior. Thus, the vegetable fibers are potentially applicable to produce high mechanical performance and sustainable cementitious materials for use in the Civil Construction.


Telematika ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 26
Author(s):  
Afif Irfan Abdurrahman ◽  
Bambang Yuwono ◽  
Yuli Fauziah

Flood disaster is a dangerous disaster, an event that occurs due to overflow of water resulting in submerged land is called a flood disaster. Almost every year Bantul Regency is affected by floods due to high rainfall. The flood disaster that struck in Bantul Regency made the Bantul District Disaster Management Agency (BPBD) difficult to handle so that it needed a mapping of the level of the impact of the flood disaster to minimize the occurrence of floods and provide information to the public.This study will create a system to map the level of impact of floods in Bantul Regency with a decision support method namely Multi Attribute Utility Theory (MAUT). The MAUT method stage in determining the level of impact of flood disasters through the process of normalization and matrix multiplication. The method helps in determining the areas affected by floods, by managing the Indonesian Disaster Information Data (DIBI). The data managed is data on criteria for the death toll, lost victims, damage to houses, damage to public facilities, and damage to roads. Each criteria data has a value that can be used to determine the level of impact of a flood disaster. The stages for determining the level of impact of a disaster require a weighting calculation process. The results of the weighting process display the scoring value which has a value of 1 = low, 2 = moderate, 3 = high. To assist in determining the affected areas using the matrix normalization and multiplication process the process is the application of the Multi Attribute Utility Theory (MAUT) method.This study resulted in a mapping of the level of impact displayed on google maps. The map view shows the affected area points and the level of impact of the flood disaster in Bantul Regency. The mapping produced from the DIBI data in 2017 produced the highest affected area in the Imogiri sub-district. The results of testing the data can be concluded that the results of this study have an accuracy rate of 95% when compared with the results of the mapping previously carried out by BPBD Bantul Regency. The difference in the level of accuracy is because the criteria data used are not the same as the criteria data used by BPBD in Bantul Regency so that the accuracy rate is 95%.


Jurnal Segara ◽  
2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Aprizon Putra

Padang city has a coastline 80.24 km with a water area 72,000 ha, and 19 small islands. Overall, coastal in Padang City consists of beach sloping 41.52 km, cliff 22.08 km, muddy 8.19 km, and type of artificial beach in form of building coastal protection. The research aims at identifying suitability for ecotourism beach (category of recreation beach and mangrove). The methodology used ie with the matrix of suitability ecotourism beach using geospatial approach. Research results for suitability category recreation beach in 24 locations in beach Padang City 18 locations are in the category of very suitable with a value 82.28 % and only beach in Bung Hatta University are in category conditional with a value 27 %. Suitability category ecotourism mangrove in 19 locations in beach Padang City 6 location is in a category is in accordance with a value 92.11 % and 4 location is in a category conditional/not suitable to value 50.88 %.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
J. Ramesh Babu ◽  
K. Ravindhranath ◽  
K. Vijaya Kumar

Composite polymer electrolyte films containing various concentrations of nano-Dy2O3 (1.0 to 4.0%) in PVA + sodium citrate (90 : 10) are synthesized adopting solution cast method and are characterized using FTIR, XRD, SEM, and DSC techniques. The investigations indicate that all components are homogenously dispersed. Films containing 3% of nano-Dy2O3 are more homogenous and less crystalline, and the same is supported by DSC studies indicating the friendly nature to ionic conductivity. Transference number studies reveal that the major charge carriers are ions. With the increase in % of nano-Dy2O3, the conductivity increases and reaches maximum in 3% film with a value of 1.06 × 10−4 S/cm (at 303 K). Further, the conductivity of the film increases with raise in temperature due to the hopping of interchain and intrachain ion movements and fall in microscopic viscosity at the matrix interface of the film. Electrochemical cells are fabricated using these films with the configuration “anode (Mg + MgSO4)/[PVA (90%) + Na3C6H5O7 (10%) + (1–4% nano-Dy2O3)]/cathode (I2 + C + electrolyte),” and various discharge characteristics are evaluated. With 3% nano-Dy2O3 film, the maximum discharge time of 118 hrs with open-circuit voltage of 2.68 V, power density of 0.91 W/kg, and energy density of 107.5 Wh/kg are observed. These findings reflect the successful adoption of the developed polymer electrolyte films in electrochemical cells.


2019 ◽  
Vol 964 ◽  
pp. 156-160 ◽  
Author(s):  
Mohammad Farid ◽  
Agung Purniawan ◽  
Diah Susanti ◽  
Amaliya Rasyida ◽  
Henry Yulianto ◽  
...  

Nanocellulose composites are very potential to be applied as automotive component materials.The purpose of this research is to analyze the influence of nanocellulose fraction of the silicon rubber composite material to morphology, sound absorption coefficient, density, thermal stability, and thermal conductivity. The nanocellulose of the composites were isolated from oil palm empty fruit bunch, while the matrix was silicone rubber. Tests conducted in this research included sound absorption coefficient, SEM, TGA, density, and thermal conductivity. Sound absorption coefficient had a value between 0,33 to 0.42 for a frequency of 500 Hz to 4000 Hz. This sound absorption coefficient had a wide band sound absorption tendency and was developed for sound absorption material of mufflers.


This paper describes an experimental study of the effect of hydrostatic pressure on the diffusion of linear hydrocarbons through molten polyethylene and polypropylene. The diffusants range in length from 20 to 260 carbons and are suitably tagged for identification by infrared spectroscopy. The results show that the diffusion coefficient D is reduced by the pressure p and the behaviour may be described by a relation of the form D = D 0 e - pV / kT , where V is the activation volume. For hydrocarbons ranging in length from 20 to 260 carbons diffusing through both branched and linear polyethylene, V has a value lying between about 40 and 90 Å 3 (1 Å 3 = 10 -30 m 3 ). Diffusion through polypropylene involves a small but significant increase in V . Similarly the incorporation of a bulky group in the middle of a linear hydrocarbon produces some increase in V . However, the main conclusion is that the activation volume bears no relation to the size of the diffusant: it corresponds to the volume of only three or four carbons in the chain. These results and the earlier diffusion studies of Klein & Briscoe (1976, 1979) suggest that diffusion of long chain molecules through a molten polymer proceeds by a process of reptation in which the fine scale mechanism involves cooperative rotations or crankshaft motions of both the diffusant and the matrix.


It is usual to regard glass as a purely brittle solid and this has been taken for granted in almost all past papers on the mechanical strength, static fatigue, and ageing properties of glasses. However, in the present note this approach is rejected as being incompatible with experimental evidence of plastic flow in glass, and incapable of explaining the strengths observed. Instead a completely new approach is attempted in which glass is treated as an elastic-plastic solid and a complete theory of glass flow and strength is developed. The note summarizes the contents of three papers soon to be published which develop these ideas in more detail, and readers are referred to these three papers (Marsh 1964 a , b , c ) for full experimental and theoretical support of the ideas presented here. In brittle fracture theory glass is expected to exhibit its theoretical cohesive strength if it is flaw-free (e. g. untouched glass fibre), but if handled surface cracks are introduced and the strength should fall to a value predicted either by the Griffith (1920) energy balance equation or by the known stress concentration factor at the crack tip. Secondary effects such as static fatigue and ageing can then be explained as stress corrosion phenomena.


Sign in / Sign up

Export Citation Format

Share Document