Biological Corrosion Failures

2002 ◽  
pp. 881-898 ◽  
Keyword(s):  
2020 ◽  
Vol 786 (11) ◽  
pp. 41-46
Author(s):  
V.V. STROKOVA ◽  
◽  
V.V. NELUBOVA ◽  
M.N. SIVALNEVA ◽  
M.D. RYKUNOVA ◽  
...  

The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 697
Author(s):  
Anna Wiejak ◽  
Barbara Francke

Durability tests against fungi action for wood-plastic composites are carried out in accordance with European standard ENV 12038, but the authors of the manuscript try to prove that the assessment of the results done according to these methods is imprecise and suffers from a significant error. Fungi exposure is always accompanied by high humidity, so the result of tests made by such method is always burdened with the influence of moisture, which can lead to a wrong assessment of the negative effects of action fungus itself. The manuscript has shown a modification of such a method that separates the destructive effect of fungi from moisture accompanying the test’s destructive effect. The functional properties selected to prove the proposed modification are changes in the mass and bending strength after subsequent environmental exposure. It was found that intensive action of moisture measured in the culture chamber of about (70 ± 5)%, i.e., for 16 weeks, at (22 ± 2) °C, which was the fungi culture, which was accompanying period, led to changes in the mass of the wood-plastic composites, amounting to 50% of the final result of the fungi resistance test, and changes in the bending strength amounting to 30–46% of the final test result. As a result of the research, the correction for assessing the durability of wood-polymer composites to biological corrosion has been proposed. The laboratory tests were compared with the products’ test results following three years of exposure to the natural environment.


2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


2015 ◽  
Vol 9 (12) ◽  
pp. 886-891
Author(s):  
A Arun ◽  
Jothibasu M ◽  
Vigneshwari R ◽  
H Dinesh G ◽  
Mohan Rasu K ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 505 ◽  
Author(s):  
Dariusz Bajno ◽  
Lukasz Bednarz ◽  
Zygmunt Matkowski ◽  
Krzysztof Raszczuk

In order to create and make available the following: Design guidelines, recommendations for energy audits, data for analysis and simulation of the condition of masonry walls susceptible to biological corrosion, deterioration of comfort parameters in rooms, or deterioration of thermal resistance, the article analyzes various types of masonry wall structures occurring in and commonly used in historical buildings over the last 200 years. The summary is a list of results of particular types of masonry walls and their mutual comparison. On this basis, a procedure path has been proposed which is useful for monitoring heat loss, monitoring the moisture content of building partitions, and improving the hygrothermal comfort of rooms. The durability of such constructions has also been estimated and the impact on the condition of the buildings that have been preserved and are still in use today was assessed.


2019 ◽  
Vol 284 ◽  
pp. 07006 ◽  
Author(s):  
Wojciech Skowroński ◽  
Bohdan Stawiski

For many years work has been performed to obtain sufficiently accurate correlation between the results of ultrasonic tests and the results of strength tests for evaluation of the strength parameters of wood in a structure. It is also important to ensure the development of methods which will facilitate the work of construction mycologists; that is, non-invasive methods of determining the volume of missing materials caused by biological corrosion. The study presents the idea of the objective examination of the thickness of a corroded layer by measuring the velocity of ultrasonic pulse along the fibre length using for this spot heads with thin waveguides. Another testing method presented in the study is controlling the velocity of ultrasonic wave in the direction tangential to annual growth rings by conducting tests on the corner of the corroded beam.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5975
Author(s):  
Dariusz Bajno ◽  
Agnieszka Grzybowska ◽  
Łukasz Bednarz

Construction is a powerful industry that is not indifferent to the environment. Neither the maintenance of buildings in a proper technical condition nor their eventual demolition is indifferent to the environment. The main threats to the environment are still the inefficient use of construction materials and energy needed for their production and installation, as well as the emission of harmful substances to the environment at the stage of operation of buildings and their demolition. This article discusses the importance of wood as a renewable material in terms of its physical and mechanical properties. The restoration of forest areas is of great importance to the global ecosystem and the sustainable development system, reducing the threat of global warming and the greenhouse effect by reducing CO2 levels. In addition, demolition wood can be reused in construction, can be safely recycled as it quickly decomposes, or can be used as a source of renewable energy. The preservation of existing timber-framed buildings in good condition contributes to a lower consumption of this raw material for repair, which already significantly reduces the energy required for their manufacture, transport, and assembly. This also reduces the amount of waste that would have to be disposed of in various ways. Both at the stage of design, execution, and then exploitation, one forgets about the physical processes taking place inside the partitions and about the external climatic influences of the environment (precipitation, water vapor, and temperature) on which the type, intensity, and extent of chemical and biological corrosion depend to a very high degree. This paper presents examples of the influence of such impacts on the operational safety of three selected objects: a feed storehouse and an officer casino building from the second half of the nineteenth century and an 18th century rural homestead building. The research carried out on wooden structures of the above-mentioned objects “in situ” was verified by means of simulation models, which presented their initial and current technical conditions in relation to the type and amount of impact they should safely absorb. Moreover, within the framework of this paper, artificial intelligence methods have been implemented to predict the biological corrosion of the structures studied. The aim of the paper was to draw attention to the timber already built into buildings, which may constitute waste even after several years of operation, requiring disposal and at the same time the production of a substitute. The purpose of the research carried out by the authors of the article was to examine the older and newer buildings in use, the structures of which, in whole or in part, were made of wood. On a global scale, there will be considerable demand for the energy required to thermally dispose of this waste or to deposit it in landfills with very limited capacity until its complete biological decomposition. These energy demands and greenhouse gas emissions can be prevented by effective diagnostics of such structures and the predictability of their behaviour over time, with respect to the conditions under which they are operated. The authors of the article, during each assessment of the technical condition of a building containing wooden elements, analysed the condition of their protection each time and predicted the period of their safe life without the need for additional reinforcements or replacement by others. As the later reality shows, it is a very effective method of saving money and energy.


Author(s):  
C.-M. Lee ◽  
L.-F. Wu ◽  
S.-D. Chyou ◽  
S.-T. Kuo ◽  
S.-J. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document