Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete

2009 ◽  
Vol 13 (9) ◽  
pp. 1039-1050 ◽  
Author(s):  
Tai-Thu Nguyen ◽  
Vincent Picandet ◽  
Sofiane Amziane ◽  
Christophe Baley
Author(s):  
Samo Lubej ◽  
Sebastian Toplak ◽  
Marjan Lep ◽  
Andrej Ivanič

In the article, an analysis of tensile strength fiber hemp and hemp fiber linkage analysis in the cement matrix is presented. The average tensile strength of the fibers of untreated hemp amounts to 764 MPa and the calculated modulus of elasticity amounts to 30 GPa. A test of pulling fibers from the cement matrix has shown that when increasing the length linkage, the maximum pulling force increases while the clamping strength does not significantly change. In the laboratory, a mixture of hemp concrete where a portion of mineral aggregate was replaced with hemp hurd was prepared. Results of the examination of the microstructure of hardened lime binder have shown that the hardened NHL mixture is porous and vapor-permeable while the hardened HL mixture is thick and compact. The goal was to create a prototype hemp concrete mixture that can be used for production of prefabricated elements with tensile strength between 10 and 25 MPa.


2009 ◽  
Vol 13 (9) ◽  
pp. 1039-1050 ◽  
Author(s):  
Tai-Thu Nguyen ◽  
Vincent Picandet ◽  
Sofiane Amziane ◽  
Christophe Baley

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6384
Author(s):  
Xiaoping Li ◽  
Mingli Qiang ◽  
Mingwei Yang ◽  
Jeffrey J. Morrell ◽  
Neng Zhang

Natural fiber/plastic composites combine the low density and excellent mechanical properties of the natural fiber with the flexibility and moisture resistance of the plastic to create materials tailored to specific applications in theory. Wood/plastic composites (WPC) are the most common products, but many other fibers are being explored for this purpose. Among the more common is hemp hurd. Natural fibers are hydrophilic materials and plastics are hydrophobic, therefore one problem with all of these products is the limited ability of the fiber to interact with the plastic to create a true composite. Thus, compatibilizers are often added to enhance interactions, but fiber pretreatments may also help improve compatibility. The effects of pectinase or cellulase pretreatment of wood/hemp fiber mixtures in combination with coupling agents were evaluated in polypropylene panels. Pretreatments with pectinase or cellulase were associated with reduced thickness swell (TS24h) as well as increased modulus of rupture and modulus of elasticity. Incorporation of 5.0% silane or 2.5% silane/2.5% titanate as a coupling agent further improved pectinase-treated panel properties, but was associated with diminished properties in cellulase treated fibers. Combinations of enzymatic pretreatment and coupling agents enhanced fiber/plastic interactions and improved flexural properties, but the effects varied with the enzyme or coupling agent employed. The results illustrate the potential for enhancing fiber/plastic interactions to produce improved composites.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Sign in / Sign up

Export Citation Format

Share Document