scholarly journals Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms

2020 ◽  
Vol 103 (7) ◽  
pp. 5816-5829
Author(s):  
Chen Li ◽  
Zhihua Niu ◽  
Meijuan Zou ◽  
Suyue Liu ◽  
Miaoshu Wang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxia Wang ◽  
Songlin Huang ◽  
Liangliang Yang ◽  
Guogang Zhang

There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p > 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chung-Ming Chen ◽  
Hsiu-Chu Chou ◽  
Yu-Chen S. H. Yang

Maternal antibiotic treatment (MAT) during prenatal and intrapartum periods alters the bacterial composition and diversity of the intestinal microbiota of the offspring. The effect of MAT during pregnancy on the intestinal microbiota and its relationship with intestinal development remain unknown. This study investigated the effects of MAT during pregnancy on intestinal microbiota, injury and inflammation, vascularization, cellular proliferation, and the intestinal barrier in neonatal mice. At timed intervals, we fed pregnant C57BL/6N mice sterile drinking water containing antibiotics (ampicillin, gentamicin, and vancomycin; all 1 mg/ml) from gestational day 15 to delivery. The control dams were fed sterile drinking water. Antibiotic administration was halted immediately after birth. On postnatal day 7, the intestinal microbiota was sampled from the lower gastrointestinal tract and the ileum was harvested for histology, Western blot, and cytokines analyses. MAT significantly reduced the relative abundance of Bacteroidetes and Firmicutes and significantly increased the relative abundance of Proteobacteria in the intestine compared with their abundances in the control group. MAT also significantly increased intestinal injury score and cytokine levels, reduced the number of intestinal goblet cells and proliferating cell nuclear antigen-positive cells, and reduced the expressions of vascular endothelial growth factor and tight junction proteins. Therefore, we proposed that maternal antibiotic exposure during pregnancy disrupts the intestinal microbiota and intestinal development in neonatal mice.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5733
Author(s):  
Feng Liu ◽  
Lijia Zhang ◽  
Xi Feng ◽  
Salam A. Ibrahim ◽  
Wen Huang ◽  
...  

The effects of immunomodulatory activity of two types of carboxymethyl pachymaran (CMP-1 and CMP-2) on cyclophosphamide (CTX)-induced mice were investigated. Both CMP-1 and CMP-2 were found to restore the splenomegaly and alleviate the spleen lesions and the mRNA expressions of TLR4, MyD88, p65 and NF-κB in spleen were also increased. CMP-1 and CMP-2 could enhance the immunity by increasing the levels of TNF-α, IL-2, IL-6, IFN-γ, Ig-A and Ig-G in serum. In addition, CMP-1 could increase the relative abundance of Bacteroidetes and reduce the relative richness of Firmicutes at the phylum level. CMP-1 and CMP-2 could reduce the relative abundance Erysipelatoclostridum at the genus level. CMP-1 and CMP-2 might enhance the immune function of immunosuppression mice by regulating the gene expression in the TLR4/NF-κB signaling pathway and changing the composition and abundance of the intestinal microbiota. The results suggested that CMP-1 and CMP-2 would be as potential immunomodulatory agents in functional foods.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8923
Author(s):  
Yimeng Li ◽  
Minghui Shi ◽  
Tianxiang Zhang ◽  
Xin Hu ◽  
Baofeng Zhang ◽  
...  

Weaning is an important event for all mammals, including young forest musk deer. However, weaning stress may cause intestinal microbiota-related disorders. Therefore, high-throughput 16S rRNA gene sequencing was applied to study the dynamic changes in intestinal microbiota during pre-weaning (10 days before weaning) and post-weaning (10 days after weaning) in 15 young forest musk deer. We saw that intestinal microbiota diversity in the post-weaning period was significantly higher than that in the pre-weaning period. The most dominant bacterial phyla were similar in the two groups (Firmicutes, Bacteroidetes and Verrucomicrobia). Meanwhile, we applied Linear discriminant analysis effect size (LefSe) to identify the most differentially microbial taxa in the pre-weaning and post-weaning groups. In the post-weaning forest musk deer, the relative abundance of Actinobacteria, Spirochaetes, Ruminococcaceae_UCG-005, Treponema and Prevotella was higher than in the pre-weaning group. However, higher relative abundance of the phyla Bacteroidetes was found in the pre-weaning group compared with that in the post-weaning group. In summary, this research provides a theoretical foundation for the dynamics of young forest musk deer intestinal microbiota during the weaning transition, which may benefit in understanding the growth and health of forest musk deer.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1909
Author(s):  
Ilaria Biasato ◽  
Ilario Ferrocino ◽  
Elena Grego ◽  
Sihem Dabbou ◽  
Francesco Gai ◽  
...  

In the present trial, 160 heavy-size male broiler chickens were allocated to 4 dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with 5 replicate pens/treatment and 8 birds/pen) to evaluate the influence of TM meal on intestinal microbiota and mucin composition. The broiler chickens fed TM-based diets showed higher beta diversity of their cecal microbiota in comparison with the C birds (p < 0.001). A significant decrease of the relative abundance of Firmicutes phylum and lower Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05) were also identified in TM15 broiler chickens when compared to the C group. Furthermore, the TM birds showed decreased relative abundance of Clostridium, Coprococcus, L-Ruminococcus and Ruminococcus genera (FDR < 0.05). In relation to the gut mucin composition, higher mucin staining intensity was detected in the intestinal crypts of TM5 birds in comparison with the other TM groups (p < 0.05). In conclusion, dietary TM meal inclusion negatively influenced the cecal microbiota of heavy-size broiler chickens in terms of partial alteration of the physiological microbial population and reduction of the potential beneficial bacteria (with slightly more pronounced effects when testing the 10–15% inclusion levels).


2017 ◽  
Vol 312 (6) ◽  
pp. G559-G571 ◽  
Author(s):  
J. Philip Karl ◽  
Lee M. Margolis ◽  
Elisabeth H. Madslien ◽  
Nancy E. Murphy ◽  
John W. Castellani ◽  
...  

The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides. Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress.NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with changes in intestinal microbiota composition and metabolism. Prestress intestinal microbiota composition and changes in fecal concentrations of metabolites linked to the microbiota were associated with increased intestinal permeability. Findings suggest that targeting the intestinal microbiota could provide novel strategies for mitigating increases in intestinal permeability during stress.


2016 ◽  
Vol 7 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Y.B. Wang ◽  
W. Du ◽  
A.K. Fu ◽  
X.P. Zhang ◽  
Y. Huang ◽  
...  

The oral administration of Enterococcus faecium EF1 to new-born suckling and weaning piglets along with their growth performances and intestinal microbiota was investigated in this study. Twenty-four new-born piglets were initially divided into 2 groups. The probiotics group received 2 ml of 10% sterilised skimmed milk by oral gavage supplemented with 6×108 cfu/ml viable E. faecium EF1 at the first, the third and the fifth day after birth, while the control group received 2 ml of 10% sterilised skimmed milk without probiotics at the same time. Results showed that oral administration of E. faecium EF1 was associated with a remarkable increase on the body weight of piglets for both suckling and weaning periods, by 30.73% (P<0.01) and 320.84% (P<0.01), and also decreased the diarrhoea rate, by 43.21% (P<0.05) and 71.42% (P<0.05), respectively. In addition, 454-pyrosequencing analysis revealed that there was no significant difference in the intestinal microbial diversity of the suckling piglets between the two groups; nevertheless, when compared to the control group, the relative abundance of Firmicutes in the probiotics group was substantially augmented, while the relative abundance of Proteobacteria, Bacteroidetes and Fusobacteria diminished. However, results indicated that oral administration of E. faecium EF1 did not have any influence on the relative abundance of Firmicutes in weaning piglets rather than increasing the relative abundance of Bacteroidetes and decreasing the relative abundance of Proteobacteria. Furthermore, at the level of the Firmicutes phylum, the relative abundance of Lactobacillales in the probiotic group increased significantly. These findings suggest that oral administration of E. faecium EF1 to new-born piglets could improve the growth performance and intestinal microbiota of piglets for both suckling and weaning periods.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Yuan Zhineng ◽  
Ma Ying ◽  
Tang Bingjie ◽  
Zeng Rouxian ◽  
Zhou Qiang

Abstract Purpose Black soldier fly transforms organic waste into insect protein and fat, which makes it valuable for ecological utilization. This process is associated with the intestinal microbiota. This research was developed to determine the type and functional characteristics of intestinal microbiota present in black soldier fly larvae. Methods In this research, metagenomics has been used to study black soldier fly larvae gut bacteria, which involves the high abundance of the gut microbe advantage bacterium group, the impact, and the physiological functions of the microbiota. Furthermore, intestinal bacteria and their related functions were investigated by bioinformatics analysis to evaluate potential microbial strains that may be used to improve feed utilization efficiency in factory farming. Result The results showed that black soldier fly larvae’s intestine contains more than 11,000 bacteria. The high relative abundance of group W (larvae fed with 75% wheat bran and 25% soybean powder) may promote feed utilization efficiency, whereas high relative abundance of group T microbiota (larvae fed with 75% wheat bran and 25% soybean powder supplemented with 1% tetracycline) may play an important role in black soldier fly larvae survival. Conclusion The gut bacteria in black soldier fly larvae were involved in polysaccharide biosynthesis and metabolism, translation, membrane transport, energy metabolism, cytoskeleton, extracellular structures, inorganic ion transport and metabolism, nucleotide metabolism, and coenzyme transport physiological processes. The 35 significant differential microbes in group W may have a positive impact on feed utilization and physiological process.


Sign in / Sign up

Export Citation Format

Share Document